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Preface

This thesis is the fourth in a series devoted to increasing the accuracy of the

Completely Integrated Reference Instrumentation System (CIRIS) used by the Cen-

tral Inertial Guidance Test Facility (CIGTF), Holloman AFB, NM to validate the

accuracy of inertial navigation systems (INSs). However, the material contained

within these pages is not limited only to this application. The, incorporation of

Global Positioning System (GPS) and Differential GPS (DGPS) measurements ex-

tends to any INS in production or development through the use of Kalman filtering.

As GPS usage expands throughout the military and civilian communities, I hope

this thesis provides a small contribution in this area.

As the fourth in a series of theses, I would be delinquent if I did not mention

the people responsible for the excellent work which proceeded this thesis. Captains

Solomon, Snodgrass, and Stacey all deserve more thanks than I can give them in this

format, so I will just say "well done". Their previous theses provided the backbone

from which my DGPS work grew, and I would not have completed one-fourth of the

work I accomplished were it not for their legacy.

I would also like to thank Mr Darwin Abbey and Mr Scott Dance of Intermetrics

for taking time out of their busy schedule to explain DGPS to an apprentice. The

DGPS filters within this thesis can largely be. attributed to their recommendations,

and I hope performance is up to their expectations. I can honestly say I am looking

forward to working with these gentlemen whefi I get to CIGTF to further refine the

baic filters contained in this thesis.

Next, a few kind words to the gentlemen on my. thesis committee are in order.

Captain Randall Paschall, my advisor, kept me "on course" throughout this work

and his guidance allowed me to complete as much work as I (lid. Thanks, Randy,

for showing me the light at the end of the tunnel. Dr Peter Maybeck, a visionary in

, ii



the field of stochastic estimation, gave me the clear insights on filter order reduction

and tuning used throughout this thesis. Without his advice, this thesis would not

be worth the paper it is printed on. Lt Col David Meer and Maj Robert Riggins

provided their time and enthusiasm over my work when it was needed, and I thank

them for their efforts.

A special word of thanks must go to Mr Dan Zambon. a man greatly responsible

for my success in completingithis thesis. Dan gave me the opportunity to utilize six

different computer systems and over 300 mega-bytes of storage space for all my

simulations and results. Were it not for his dedicated efforts keeping the computer

systems working at high efficiency, I would never have completed the first Monte

Carlo simulation or tuned the first filter let alone the three thousand Monte Carlo

runs this thesis encompasses.

Also, my parents must also be recognized for instilling in me the need for higher

education. Their support throughout the years made it possible for me to complete

this thesis and earn yet another degree. I am only now beginning to realize how

much their guidance throughout my life has contributed to my current success.

Finally, a word to my wonderful wife Annette. I will never be able to repay

you for the many months you were neglected so that I could complete this thesis.

Your endless encouragement is the driving force making all my successes possible. I

thank God for giving me someone as special as you to spend the rest of my life with.

William Joseph Negast

CoU
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AFIT/GE/ENG/91D-41

Abstract

To quantify the performance abilities of e-isting or proposed navigation sys-

tems, the U.S. Air Force has, for the last several years, compared the performance

of the system under test to the performance of a baseline navigation system known

as the Completely Integrated Reference Instrumentation System (CIRIS). CIRIS

obtains a highly accuratk, ,.avigation solution by combining information from three

major subsystems: inertial navigation system (INS) information, barometric altitude

information, and' range and range-rate information from ground transponders which

have been precisely surveyed. Although the navigation solution produced by CIRIS

is highly accurate, it will soon be inadequate as the standard against which future

navigation systems can be tested. This research proposes an alternative to CIRIS

- a b.. brid Enhanced Nav'igation Reference System (ENRS) which, is designed to

take advantage of a newer INS (the LN-93), certain features of the current CIRIS,

and certain features of differential corrections to Global Positioning System (DGPS)

measurements. Analysis is conducted using a Kalman filter development package

known 'as the Multimode Simulation for Optimal Filter Evaluation (MSOFE). Both

a large order truth model for the ENRS (in which a full 24 satellite constellation is

modeled) and full- and reduced-order Kalman filters are developed. Results suggest

that the' proposed ENRS (with DGPS aiding) provides a navigation solution one

order of magnitude better than CIRIS.
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INCORPORATION OF DIFFERENTIAL GLOBAL

POSITIONING SYSTEM MEASUREMENTS

USING AN EXTENDED KALMAN FILTER

FOR. IMPROVED REFERENCE

SYSTEM PERFORMANCE

L Introduction

The Completely Integrated Reference Instrumentation System (CIRIS) is a

transponder aided Inertial Navigation System (INS) test reference currently used by

the Air Force for the development and testing of new aircraft navigation systems

(20:1-1). The Office of Primary Responsibility (OPR) for the CIRIS system is the

Central Inertial Guidance Test Facility (CIGTF), 6585th Test Group, Air Force

Systems Command (AFSC), Holloman AFB, NM. The operation of CIRIS involves

flying the INS to be tested, referred to as the test article, and CIRIS through an

aircraft trajectory of interest across a CIRIS transponder range. The data from,

each system. is recorded during the flight and compared to aiilyze how well the test

article performed. Up to this point in time, CIRIS was' considered more accurate

than the test articles and formed the baseline for determining the performance of

aircraft IN.Ss.

1.1 Background

CIRIS determines the aircraft's latitude and longitude with a la accuracy of

13 feet(ft) horizontal and 40 ft vertical; the north and west'velocity to 0.1 ft/sec

(fps) l; and the vertical velocity to 0.4 fps 1& (20:1-I). Thi accuracy is due to the
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Range/Range-Rate System (RRS) transponder aiding (8, 9). Recently, there have

been a few state-of-the-art aircraft INSs developed (and many more in the design

stage) approaching the accuracy of CIRIS. Interestingly, many of th.se new !NSs

use the Global Positioning System (GPS) to increase their accuracy. In order to use

CIRIS as a baseline against these new INSs, CIRIS must be enhanced to provide an

order of magnitude more accurate navigation solution.

1.2 Problem Definition

By using Differential Global Positioning System (DGPS) measurements to aug-

ment the navigation solution of CIRIS, it should be possible to increase the accuracy

of CIRIS to produce an order of magnitude better estimate of the navigation solu-

tion. Specifically, this thesis concentrates on developing a post-processing Extended

Kalman Filter (EKF) of 70 states or less to augment the CIRIS navigation solution

with DGPS pseudorange and dtlta-range measurements. An EKF is developed in-

stead of a smoother due to the limited computer storage capacity available. The EKF

is limited to 70 states or less to ensure 24 hour tnrn-arour.J time for post-processing

ieal measurements during INS testing at CIGTF. Pseudorange and delta-range mea-

sureme rts are explained in detail in the DGPS sections of Chapter IV.

1 2.1 Sitmmary of Effort. The Navigation 'Reference System (NRS) filter

Stacey esigned (22) is tuned by Monte Carlo analysis and its performance relative

to CIR[S is analyzed. A 41 error-state reduced-order INS filter model is developed

based on the recommendations of Lewantowicz and Keen (10). 97- and 69-state NRS

::lter m dels are evaluated and compared to Stacey's NRS filter and CIRIS. A DGPS

error odel is developed and augmented to the INS ann RRS error mod,'ls to form

the 89- tate Enhanced Navigation Reference System (ENRS) truth and filter mod-

els. Finally, a reduced-order ENRS filter of 48 error-states incorporating delta-range

and ra ge-rate measurements is designed, developed, and compared to the NRS and

CIRIS.
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1.3 Summary of Previous Research

Previous research at AFIT by Captains Joe Solomon (GE-89M), Britt Snod-

grass (GE-90M), and Richard Stacey (GE-91M) focused on improving CIRIS per-

formance (20, 21, 19, 22). Solomon modified the CIRIS error model, produced an

exten-led Kalman filter designed to enhancc CIRIS performance (20), and performed

preliminary work on the GPS error-state model (21). Snodgrass evaluated and modi-

fied Solomon's filter design (19). Stacey augmented the LN-93 baro-altimeter model,

implemented a reduced-order INS error modei, designed high order CIRIS/GPS truth

and filter models, and developed a Kalman filter to integrate GPS pseudorange mea-

surements into CIRIS (22).

Capt Solomon concentrated his effort ou designing an improved Kalman filter

for CIRIS (20). He used an 85-state truth model for the LN-39 INS and 42 states to

model 10 RRS transponders for a total of 127 states in his full-state truth model. He

designed a 127-state Kalman filter using this design and verified its performance using

actual CIRIS flight data. He then developed a reduced-order 70-state Kalman filter

which performed as well as the full-order filter but required much less computational

time to implement. In a special study, Solomon designed a 28-state error model for

the GPS system assuming stationary satellites (21). Solomon never developed an

integrated CIRIS/GPS filter.

Capt Snodgrass continued the development of Solomon's 70-state reduced-

order fi!ter (19). He 'improved the filter software by modifying the structure of

the source code, making it easier to change filter parameters, thus, in'-asing its

efficiency and capabilities. He then tuned various filter parameters which improved

filter performance. Finally, he designed a fixed-interval smoothing alzorithm 'to use

as a post-processor to generate the optimal reference trajectory. Snodgrass was never

able to evaluate his smoother due to limitations in time and computer memory.

Capt S tacey returned to a 93-state truth model for the INS in his thesis when

he incorporated the error-model for a Litton LN-93 INS (11) instead of the LN-39
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INS used by Solomon and Snodgrass (20, 19, 22). ie increased this to a 96-state

model through improvement of the baro-altimeter model by using a four-state model

instead of a one-state model. Ile then designed a 72-state reduced-order INS model

and filter to reduce computational times. lie augmented this reduced-order model

with 26 RRS transponder error-states and 30 GPS error-states for a 128-state truth

and filter model. He completed one simulation run with this model, referred to as

the Navigation Reference System. It is important to note Stacey never implemented

GPS delta-range or RRS range-rate measurement equations in his research.

1.4 Research Objectives

This research finishes developing the NRS filter started by Stacey. The full-

order Kalman filter is analyzed and the performance increase over CIRIS is charac-

terized. Then both the truth and fitter models are reduced by decreasing the 72-state

INS model to 41 states, thus decreasing the full-order truth and filter models to 97

states from Stacey's 128 states. This decrease is necessary for a timely completion

of this thesis a 1,d matches the results of the 'higher order truth and filter models

developed by Stacey (22).

An Enhanced Navigation Reference System (ENRS) is then developed. The

ENRS augments standard CIRIS wit!; 0GPS 1,seudorange and delta-range measure-

ments. The ENRS'is evaluated against the NRS as we!l as CIRIS to show the

performance increase availaole from augmenting CIRIS with DGPS measurements.

By-increasing accuracy using the ENRS, the position and velocity estimates are more

accurate than the current CIRIS's navigation solution.

The followicg objectives are based on the statement of the problem as pre-

sented in the previous sections.

1. Perform 10-run Monte Carlo analysis on the 128-state NRS filter designed by

Stacey (22). Compare these results to CIRIS performance and show the increment in
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performance possible with the NRS. This analysis completes the work Stacy started

on this full-order filter and completes all of the stated objectives in his thesis.

2. Decrease both the truth and filter models of the INS down to 41' states from

the 72 states Stacey implemented. Show this reduced state truth model calculates

position, velocity, and attitude error-states with no discernible difference from the

93 error-state INS model (one baro-state) but reduces computational times greatly.

3. Develop a new full-order NRS EKF incorporating the above reduced-state INS

truth model. This 97-error-state filter's performance is compared to CIRIS as well as

Stacey's 128-error-state NRS filter. This proves that the navigation solution accuracy

of CIRIS can be improved with the incorporation of GPS pseudorange measurements.

A 69-error-state reduced-order NRS filter is implemented and its performance coin-

pared to CIRIS, Stacey's NRS filter, and the 97-state full-order NRS filter.

4. Develop a DGPS error-state truth model. This model is similar to the GPS

truth model but produces less variance in the position estimates due to removal of

most of the atmospheric and ephemeris errors and elimination of the space vehicle

(SV) clock errors (1, 5, 18).

5. Design and implement an ENRS EKF using the above DGIS truth model and

the CIRIS truth model which has been previously developed (20, 19, 22). This 89-

statefull-order filter differs from the 97-state NRS filter only by a changie in the CPS

states due to implementation of a DGPS model. The performance of the ENRS filter

is compared to CIRIS and to the NRS filters to show the position accuracy improve-

ment possible with the incorporation of i)GPS j.'udorange measurements. Then a

48-error-state reduced-order ENRS filter is developed to reduice computational times
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while maintaining accuracy. Its performance is compared to CIRIS, Stacey's

NRS filter, and the 97- and 69-error-state NRS filters described above.

6. Design and implement DGPS ddta-range and RRS range-rat, measurements into

the 89-state ENRS truth model and the 48-state ENRS filter to improve tile velocity

error estimation. Show the velocity estimates with-this filter are more accurate than

CIRIS and the 48-state filter above having no velocity measurements.

7. Compare the accuracy of the 48-state ENRS filter to all previous filters. This

comparison shows the reduced-order ENRS filter with delta-range and range-rate

measurements outperforms all the NRS filters and has an order of magnitude in-

crease in position-error accuracy and an increase in velocity-error accuracy over the

CIRIS navigation solution.

1.5 Research Approach

Before any filter analysis can be accomplished, the Multimode Simulation for

Optimal Filter Evaluation (MSOFE) software package must be thoroughly under-

stood (3). MSOFE, as used in this thesis, propagates and updates the EKF and
Vf

also propagates the truth model of the system. As in Stacey's thesis, a two-hour

fighter flight profile is. used to generate the truth model for each analysis (22). Once

MSOFE is mastered, filter evaluation and tuning is accomplished. Chapter il con-

tains an overview of the EKF and also describes filter order reduction and tuning.

The remainder of this wetion gives a, brief overview of the approach to completing

each of the research objectives outlined in the previous section.

1. Stacey's truth And filter model is evaluated using 10-run Monte-('arlo analy.

sis and the NIRS filter performance is compared to CIIlS to show the increase in
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navigation solution accuracy possible by incorporating GPS pseudorange measure-

ments into CIRIS. Stacey's NRS truth and filter models are described in Chapter III

and the results are analyzed in Chapter V.

2. Stacey's truth and filter models are based on 128 error-states. It presently takes

over f8 hours for a single MSOFE one-run analysis to be completed for a 2-hour

simulated fighter flight trajectory. A 10-run Monte Carlo analysis is considered the

minimum which should be completed before any reasonable estimate of filter perfor-

mance can be evaluated. Decreasing the INS truth model from 72 states to 41 states

allows a 10-run analysis to be completed in only 4 days. However, for the 41-state

INS model to be considered adequate, it must provide a true navigation solution as

accurate as the full LN-93 93-state INS truth model. Using MSOFE and the rec-

ommendations of Lewantowicz and Keen, the 41-state INS truth model is evaluated

against the 93-state INS truth model showing almost identical performance (10).

The reduction of INS states is explained in Chapter Iii with results in Chapter V.

3. Once the INS truth model is reduced, new full-order 97 error-state NRS truth

and filter models'are developed. A 10-run Monte Carlo analysis is performed on the

filter and the results are compared to CIRIS and Stacey's NRS filter. Since four days

is still a long time to wait for results and the objective of this thesis is to develop a

filter of less than 70 states, a 69-state reduced-order filter is implemented by elimi-

nating all but two GPS error-states (the receiver clock states). This filter completes

a 10-run Monte-Carlo analysis in 36 hours, but with proper tuning (see Chapter II)

produces a navigation solution just as accurate aa Stacey's NRS, filter or the 97-state

NRS filter described above. The work in this section provides a baseline to analyze

how well the DGPS model performs. The filter reduction is explained in detail in

Chapter III with the analysis of filter performance presented in Chapter V.
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4. The DGPS model is very similar to ihe GPS model developed by Stacey. The

differences lie in the fact that the SV's clock error is totally climinated while the

atmospheric and SV ephemeris errors are greatly reduced. A complete discussion of

DGPS aswell as a detailed analysis of the 22 error-states which make up the DGPS

error model are given in Chapter IV.

5. The 89-state truth and filter models in the full-order ENRS are only different

from the 97-state NRS models discussed above by the change in the number of GPS

error-states when using DCPS. A 10-run Monte Carlo analysis is performed and the

results discussed in Chapter IV. Then, in order to meet the 70-filter-state require-

ment and reduce the 10-run time to less than one day, a 48-state filter model is

implemented by again eliminating all but two of the DGPS error-states (tile two

clock states) and 21 more INS states according to the recommendation of Lewan-

towicz and Keen (10). This 48-state filter is discussed in Chapter IV with the filter

results presented in Chapter V.

6. DGPS delta-range and RRS range-rate measurements are both needed if the ve-

locity error estimates of the ENRS filter are to be more accurate than CIRIS which

uses range-rate measurements alone for velocity aiding. The theory presented behind

delta-range and range-rate measurements is given in Chapter IV. A DGPS-INS filter

of 22 error-states (no RRS) and RRS-INS filter of 46 error-states (no 1)GPS) are,

used to tufie the velocity aiding measurements separately for optimal performance

using a 10-run Monte Carlo analysis. The results.of these two filters are presented

in Chapter V.

7.' Finally, delta-range and range-rate measurements are incorporated into the ,18-

state ENRS filter to complete the ENRS. A 25-run Monte Carlo analysis is performed
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for a final comparison against all previously discussed filters. The results of this com-

parison are presented in Chapter V.

1.6 Assumptions

Because of the lack of performance of Stacey's 4-state baro-altimeter model,

the Litton 93-state error model using one bare-altimeter state is considered the true

error model of the INS subsystem of CIRIS. The 41-state error model implemented

as truth in this thesis is shown to be a very close approximation to the 93-state

LN-93 error model. Snodgrass's RRS error model is used as the truth model for the

RRS subsystem as it was implemented in Stacey's thesis (19, 22). Finally, Stacey's

GPS error model derived from articles by Cox (4), Martin (12), and Milliken and

Zoller (17) is considered adequate to use as a starting point for the DGPS subsystem

for the ENRS.

1.7 Overview of Thesis

Chapter II provides a brief description of the EKF theory used in this thesis.

Filter order reduction and tuning are also presented. Chapter III overviews the NRS

developed by Stacey. An explanation of the procedure used in reducing the INS

error-state model from 72 to 41 states is given. The 97-state NRS truth and filter

models and the 69-state reduced-order filter model are explained. Chapter IV begins

with an explanation of the ENRS. DGPS principles and error-states are presented.

Detailed analysis of the DGPS full-state truth and filter fiodels are shown along with,

the development of the reduced-order ENRS EKF and the delta-range and range-

rate measurement equations. Chapter V discusses the results of all the Monte Carlo

analyses of the above EKFs. Chapter VI contains the conclusions drawn from the

work presented in this thesis. A summation of the overall. performance of the NRS

and ENRS filters is given. Recommendations for further research in thik area are

also addressed.
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I. Extended Kalman Filtering

2.1 Overview

This chapter refamiliarizes the informed reader with the extended Kalman filter

(EKF) dynamics, measurement, propagation and update equations as they pertain

to this thesis, and discusses filter state reduction and tuning. The reader who is

not familiar with Kalman filtering is directed to Maybeck's textbooks on stochastic

control in which robust derivations of the EKF equations and discussions of state

reduction and filter tuning are presented (14, 15, 16).

2.2 The Extended Kalman Filter

When both the dynamics and measurement equations of a system of interest

are constructed using a linear combination of the states modeled, a linear Kalman

filter can be developed. Hewever, the error- state model for this research is not a

linear function of the error-states in either the dynamics or measurement equations.

Because of this, a linearized Kalman filter of some form must be used. The lin-

earized Kalman filter implemented here is the extended Kalman filter, which allows

relinearization at each measurement update time. The equations describing the EKF

used in this research are derived from a nonlinear continuous-time dynamics equation

(14):

*(t) = f[x(t),'tJ + G(t)w(t) '(2.1)

In this case, the state dynamics matrix f[x(t), t] is a nonlinear function of the state

vector x(t) and time t . For this thesis, G(i) - I and the white Gaussian noise

w(t) is defined with mean:

m.= E {w(t))=0 (2.2)
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and noise strength Q(t) of:

E {w(t)wT(t + )= Q(t)6(T) (2.3)

In addition, the discrete-time measurement equations z(ti) are also a nonlinear func-

tion of the state -vector and time (15):

z(tl) = h[x(ti), ti + v(ti) (2.4)

The discrete-time noise vector v(ti) is also zero-mean and its covariance is described

by:

E (v(t,)vT(tj} = R(ti) for ti= tj

0 for ti :Ali

A system must be linear in order for the Kalman filter to yield the "optimal" state

estimates, so the nonlinear Equations (2.1) and (2.4) are linearized by the method

given in Mayueck's Volume 11 (15). A nominal state trajectory, x (t) is generated

satisfying X,(to) = x,,. and

",,(t).= f[x,(t),t] (2.6)

where f[x,(t),t] is specified in Equation (2.1). The nominal measurements are

defined as:

Z,(ti) = h[x.(ti), ti] (2.7)

The "perturbation" of the states are obtained by subtracting the nominal trajectory

(Equation (2.6)) from the original nonlinear dynamics equation (Equation (2.1)):.

J*(t) - i€,(t)] fqx(t), tJ - fqx.(t), i] + G(t)w(t) (2.8)

The-equation above is approximated to first order by a.Taylor series expansion:

6"x.(t) = F [t; x.(t)] + G(t)w(t) (2.9)
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where 6x(t) represents a first-order approximation of the process [x(t) - x,(t)],

and F[t;x,(t)] is a matrix of partial derivatives of fqx(t),t] with respect to x(t)

evaluated along the nominal trajectory xn(t) (15):

F[t;x,(t)] af[x(t), t] (2.10)ax IX=X ndt)

The perturbed discrete-time measurement equation is derived in like fashion and is

expressed as (15):

bzn(1i) = H [ti; xn(ti)] + v(ti) (2.11)

where
H[th;x(ti)] = - Ix~xi(t,4 (2.12)

a x Lx(ti)

The nonlinear continuous-time dynamics and discrete-time measurement equations

have now been successfully converted to linearized "error-state" equations. Estimates

of the whole-valued quantities of interest are calculated from (15):

R(t) = x"(t) + 6x(t) (2.13)

The expression above for the linearized Kalman filter is useful provided that the

linearization assumption is not violated. However, if the nominal and "true" trajec-

tories differ by too large an amount, unacceptable errors may result (15). It is for this

reason that extended Kalman filtering is useful in many cases where perturbation

techniques alone do not suffice. Extended Kalman filtering allows for relinearizing

abcut newly declared nominals at each sample time, to enhance the adequacy of the

linearization proces, and thus of the resulting filter performance as well. (22)

Discrete-time measurements are incorporated into the EKF by the following

state equations (15):

K(t) = P(t7)HT [(t,);R(tiT)] {H[(t,);J(T)JP(t7)HT[(t,);i(tT)] + R(ti)}-' (2.14)
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Sc(tt) =~ - + K(t,) {Z,-1OT (4,)11 (2.15)

P(ti)= P(t') - K(ti)H[(ti);R(t')lP(t-) (2.16)

where

= h[x(ti), ti[ (2.17)
a x= (t7)

The state estimate and covariance are propagated from t, to tj+j by integrating the

following equations (15):

xtti) = f[5Z(t/t), t] (2.18)

P(t/t1) = F[t; (t/ti)1P(t/ti) + P(t/tj)Fr[ti(t/tj) + G(t)Q(t)G T(t) (2.19)

where
F[t;5c(t/t,)l Of[x(t), t1 (2.20)

° " x=i(tt,)

and the initial conditions are:

R(tilti) = (11) (2.21)

P(ti/ti) - P(t + ) (2.22)

The EKF equations given are programmed in MSOFE for optimal error-state de-

termination. It is important to point out MSOFE uses the U-D Factored form of

the update and propagation equations (3). A complete development of linear and

linearized/extended Kalman filters is given by Maybeck's Volumes 1 and 2, respec-

tively (14, 15). An extensive explanation of Kalman filtering as it pertains to this

research is given in Chapter II of Stacey's thesis, and the information presented in

this section is paraphrased from it (22).
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2.3 Filter Order Reduction

When an engineer is faced with the task of designing a Kalman filter for a

system with a large state vector, it sometimes becomes desirable or necessary to

decrease the number of states modeled in the filter, often referred to as "filter order

reduct'.on." How and why the filter is to be utilized are important considerations

in setting the final number of states modeled. As an example, a filter which is

implemented off-line on a large mainframe or supercomputer can include a larger

number of filter states than a filter implemented on an 8-bit aircraft navigation

computer operating real-time to estimate INS position and velocity errors. Even in

the case of this thesis, where a post-processing filter is developed to run off-line on

a Hewlett-Packard minicomputer, time considerations limit the filter to less than 70

states (a 10-run Monte Carlo analysis of a 2-hour flight trajectory must be completed

in 24 hours or less). Proper choice of states from tlic truth model is critical to ensure

accurate position and velocity error estimates. The next few paragraphs offer some

general recommendations for filter order reduction with a bias toward the work

performed in this thesis.

A good starting point for filter order reduction is determining which states can-

not be eliminated. For example: the position, velocity, attitude, and baro-altimeter

states are the 10 states of interest for an INS and cannot be considered for elim-

ination (assuming they are observable) (14). Those readers familiar with aircraft

Kalman filters notes that these states compose the bulk of the states used in aircraft

navigation filters. However, the other 83 states which compose the full-order LN-93

INS error model are states which are not directly of interest,, but contribute to the

position, velocity, and attitude errors (see the discussion of Stacey's INS model in

Chapter III). Which of the 83 states can be eliminated? A smart engineer starts by

conducting a literature search on the type of model he is implementing and analyzes

the work previously accomplished with good results. The paper by Lewantowicz and

Keen (10) is a good example for this thesis. It presents four different reduced-order
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filters for the INS ranging from 41 states down to 17 states, all performing reason-

ably well. This paper forms the basis for both the truth and filter state reductions

executed in this thesis.

What happens when there is no literature on the subject? The engineer must

then analyze the states mathematically or use software tools such as MSOFE (3).

Normally, the time and frequency response of the states are determined. Then, states

with negligible magnitudes can be eliminated, or they can be combined with those

of larger magnitudes and similar frequency responses. Note that filter "tuning" is

often necessary when states are combined or eliminated, and this subject is covered

in the next section. The engineer must be extremely careful when performing state

reduction to ensure that accurate state estimates of the quantities of interest are

maintained.

A filter analysis tool such as MSOFE also helps the engineer in other ways than

those expressed above (3). When a full-order filter's state estimates are compared to

the truth model of the system, sometimes even a well-tuned filter provides estimates

of states that do'not adequately follow the true states dynamics. Normally, this lack

of filter performance in estimating states can be attributed to a lack of observability

of the states (14). Maybeck states that it is improper to include unobservable truth

model states in the filter design model (13). Examples of this phenomena in this

thesis are the GPS space vehicle (SV) position errors, (see Appendiees D, E, and

G). The filter's covariance values for these states show an adequately tuned filter.

However, the filter's state estimates never follow the true error states due to a lack

of observability of the states. MSOFE allows the engineer' to perform Monte Carlo

or covariance analysis on the filter and accurately assess its state estimation per-

formance under a wide range of conditions. Maybeck recommends using covariance

analysis on linear or linearized Kalman filters because OnMly one simulation run is re-

quired to determine the true states covariance (14). However, this one simulation run

takes a much longer time to complete whei large dimension filters are implemented
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and is not as useful for an EKF implementation, both satisfied in this thesis. Monte

Carlo analysis provides quicker results if many-run analysis is not used, though not

it is not as accurate as the covariance analysis. Often filter designers use 1- to 5-run

Monte Carlo analysis at first to get quickly "in the ballpark" and then use covariance

analysis to determine true filter performance. Only Monte Carlo analysis is used in

this thesis due to time' constraints and the implementation of an EKF.

A brief discussion of filter order reduction has been given. The general proce-

dure used to eliminate filter states successfully in this thesis has been outlined. This

procedure is by no means all inclusive, but should give the inexperienced engineer a

foundation for performing filter order reduction.

2.4 Tuning Kalman Filters

When the truth model of a system of interest is composed of linear dynamics

and measurement equations, a linear Kalman filter based upon this system proves

to be the "optimal" estimator by almost any criteria (14). When a full-order filter

of the truth model is implemented, the dynamics and measurement noises used to

construct the filter (similar to the noises used in the nonlinear filter derivation given

previously) would normally match the truth model noises. However, when filter

.order reduction is pcrformed on this linear filter, the noise strengths may have to be

adjusted to compensate for the missing/combined states. Along similar lines, when a

linearized/extended full-order Kalman filter is implemented to simulate a nonlinear

system, the noise strengths again may have to be adjusted in both the full- rder and

reduced-order filters to compensate for the approximations used in impl menting

linearized equations to model a nonlinear system and for the reduction/conr bination

of states. This filter noise strength adjustment, or "tuning", is overviewcd in the

next few paragraphs as it applies to this thesis.

The dynamics and measurement equations used in this research have been

shown pr'eviously (Section 2.2). The closer the full-order filter approxin ates the
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truth model, the less the noise strength Q(t) and covariance Rkti) are adjusted

(normally increased) to compensate for nonlinearities in the true dynamic.s. For the

full-order filters implemented in this research', there are three main reasons why the

dynamics noise strength Q(t) on some of the states needed increasing.

The first reason occurs when states which have noise (or have no noise) associ-

ated with them in the truth model need increased noise (or some noise) in the filter

model to track the dynamics of the true state adequately. Adding noise increases

the uncertainty of the filter-assumed state's dynamics to compensate for nonlinear

behavior or to keep the Kalman filter gains in that channel from going to zero. Usu-

ally the states in the filter needing this type of noise adjustment are the states which

are not part of the measurement'equation. In this thesis, some of the INS states not

part of a measurement equation need a small amount of added noise to compensate

for nonlinear dynamics. If the states are not directly part of the measurement equa-

tion, and the dynamics equations do not totally describe the true states behavior,

the EKF has difficulty estimating these states. The noise increase/addition is not

large, just enough to increase the uncertainty in the dynamics equation to account

for using a linearized/extended Kalman filter (14).

The second reason that dynamics noise needs to b- added into a filter model

occurs when the filter variance of a state goes negative. Maybeck states that this

numerical difficulty is a normal occurrence when the range of numbers the filter

estimates is large as in this filter when some of the INS states are on the order of 1.0e-6

and the GPS clock bias state is often 1.0elO (14). The problem of negative variances

arises due to the linited numerical precision of computers which must multiply high

order matrices together. True state variances which showed this tendency often have

a value of 0.0 in the truth model, and the filter does a good job of estimating the

state, but the variance often goes negative. A small amount of added noise in the

filter keeps the variance of the state positive and does not -degrade the filter's state

estimate.
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Tne third and final reason why dynamics noise is added involves filter order

reduction. States are eliminated in the INS model: states which do not show up

directly in the measurement equations, but which impact the states which are part

of the measurement equations. To compensate for the eliminated states, the noise in

the states they affect is increased. The noise increase is small, since the eliminated

states all have small magnitudes, but is necessary to ensure a well-tuned filter. In

this thesis, the first two INS states in the reduced-orler filters relating to latitude

and longitude need a small amount of noise added into the filter to compensate for

the elimination of INS states.

There are two reasons why the mea.:irement noise covariance R(G';) is adjusted

in the filters.. The first reason is the same as why the dynamics equation noise is ad-

justed upward in the full-order filters, to increase the uncertainty in the measurement

equations due to using linearized equations to model nonlinear systems. Remember,

the EKF only has access to measurements which are a combination of states, not to

the states themselves.

The second reason for increasing the measurement noise R(ti)', and the most

important and time consuming reason for increasing noise in these filter models, is

due to filter order reduction. When states are eliminated in the filter model which

are part of the measurement equaian, it is necessary to'increase R(ti). This increase

in noise is often not small, as some eliminated states have large covariance values.

A good starting point for this noise increase is to add the variance of the eliminated

states from the full-order model to the original variance of the measurement noise

(13). If this is done progressively for each eliminated state, the resu!g R(ti) is

often very close to what is needed for a well-tuned filter.

An overview of how and why filter tuning is performed in this thesis is given.

Once again, these procedures are not universal to all Kalman filter tuning. They

are basic :'easons why Kalman filters need to be tuned, and any engineer involved in

Kalman filter tuning needs to be familiar with them.
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2.5 Summary

Thi- chapter -gives a summary of the Kalman filter techniques utilized in this

thesis. The general EKF equations, filter order reduction, and filter tuning are

examined, with a bias toward how they were accomplished in this thesis. A more

detaIed derivation of te EKF equations as they pertain to this research can be

found in Stacey's thesis (22). Now that the basic theory is covered, the NRS truth

and filter models are described in the next chapter.
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III. The Navigation Reference System (NRS)

3.1 Overtiew

This chapter overviews the Litton LN-93 error model and the NRS developed

by Stacey (22) along with the 97- and 69-state NRS models implemented in this

thesis. First, the original Litton LN-93 error-state model is overviewed. Second,

Stacey's INS, RRS, and CPS models are briefly described since they form the basis

for all the other models and filters in this thesis. Third, the steps used to reduce

the 93-state INS error-model to 41 states while maintaining the accuracy of the full

93-state model are explained. Fourth, a 97-state NRS model incorporating the new

41-state INS truth model is described. Finally, a 69-state feduced-order NRS filter

is described. For a detailed explanation of Stacey's NRS, refer to Chapters 3, 4, and

5 of his thesis (22).

3.2 The 93-Stale LN-93 Error Model

This section overviews the original, 93-state Litton INS error model (11). Six

categories of errors are associated with this error model. The first category represents

the "general" error-states, states which are combinations of several other states in

the error model. Position, velocity, platform tilt, and vertical channel errors are

in this category. The second category of error consists of states described by first-

order Markov processes. B oth the gyros and accelerometers have exponentially time-

correlated errors, and the baro-altimeter state is also included in this group. The

third and fourth categories of error states are the gyro and accelerometer bias errors,

respectively. These states are modeled as random constants in the truth model. The

fifth category of error states are again first-order Markov process"s modeling the

gyro and accelerometer thermal transients. Finally, the last category of error tates

are gyro compliance errors modeled as raudom constants. The following equation
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describes the overall 93-state error model using the six categories of states (22):'

6X-" [ T  TT bxT b XT bX4T bX5T bX6T IT (3.1)

where bx is a 93 x 1 column vector and:

6x, represents the "general" error vector containing 13 position, velocity, attitude,

and vertical channel errors.

6x, consists of 16 gyr6, accelerometer, and baro-altimeter exponentially time-correlated

errors, and "trend" states. These states are modeled as first order Markov pro-

cesses in both the truth (system) model and in the Kalman filter.

6x 3 represents gyro bias errors. These 18 states are modeled as random constants

in the truth model and are modeled as random walks (with small magnitude

pseudo-noises) in the Kalman filter.

6x 4. is composed of the accelerometer bias error states. These 2 states are modeled

in exactly the same manner as the gyro bias states.

6x& depicts accelerometer and gyro initial thermal transients. The 6 thermal tran-

sient states are first order Markov processes in the system and Kalman filter.

6xs models the gyro compliance e.irrrs. These 18 error states are modeled as biases

in the system model and as random. walks in the Kalman filter.

The truth model system state spa e differential equation is of the form:

6*, F,, F;2 F, F14 Fis F,6  6x, w,

0 Fn 0 0 0 0 6x. w2

6*3 0 0 0 0 0 0 6x3 0
+ (3.2)

6*, 0 0 0 0 0 0 6x 4  0

0 0 0 Fss 0 6xs 0.

6*. 0 0 0 0 0 0-, 6X 0.
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Appendix A, Tables A.1 through A.4, contains a full listing of the 93 INS error states

as well as the RRS (Table A.5) and GPS (Table A.6) states which are explained

in later sections of this chapter. Appendix B, Tables B.1 through B.10 contain the

non-zero entries of the LN-93 error-state dynamics matrix F(t) and the the dynamics

equation noise strength matrix Q(t). Stacey's thesis describes the LN-93 error states

in more detail including the mathematical models of first order Markov processes,

random constants and random walks used in all the truth models and filters (22).

3.3 Stacey's 128-State NRS Model

This section overviews the NRS model Stacey developed in his thesis (22).

Stacey only performed a single Monte Carlo run on this filter, and its performance

was inconclusive. This thesis analyzes Stacey's 128-state filter using 10-run Monte

Carlo analysis. The results of this analysis can be found in Chapter V with plots of

filter performance in Appendix D.

3.3.1 The 72-State LN-93'Error Model. Stacey used the Litton LN-93 error

state model as the basis for the work performed in his thesis (22). However, Stacey

recognized the inadequacy of the a baro-altimeter state-in this model and designed a

4-state baro-altimeter error model (22) to implement as the truth and filter models in

his thesis. This increased the INS error model to 96 total error states. Unfortunately,

Stacey's four-state baro-altimeter model never performed up to expectations, and the

ENRS designed in this thesis returns to a single baro-altimeter state (22). Tables

A.1 through A.4 in Appendix A list the 93 INS error states.

When Stacey merged his 96 state INS model with the 26 state RRS model

and the 30 state GPS model, he found the VAX III workstations he was using (lid

not contain enough memory to compile and link the 152-state Fortran code. lIle

knew Soloraon had successfully executed code with 127 states, so he reduced the
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INS model by 24 states, maintaining the 93-state error performance, bringing the

total error model to 128 states (20, 22). Stacey eliminated the last 24 states in the

INS model and then ran simulations to prove the position, velocity, and attitude

errors were essentially the same as in the full 96-state error model. At this point,

Stacey declared this 72-state INS model to be the truth and filter models in his

analysis (22).

3.3.2 The 26-State RRS Error ModeL The Range/Range-Rate System (RRS)

is a navigation aiding system which comprises a significant part of CIRIS. Conse-

quently, the RRS is used in both the NRS and ENRS. Navigation information is

obtained by "interrogating" ground transponders and subsequently processing the

electromagnetic (EM) signals which the transponders emit. The information ob-

tamed allows high quality range and range-rate measurements to be calculated by

the RRS interrogating hardware (19). Using these range and range-rate measure-

ments, updates to the NRS position (and ENRS position and velocity estimates) are

then possible.

Solomon, Snodgrass, and Stacey each have given detailed explanations of the

RRS error-states and the range measurement equation (20, 19, 22). This section

reviews these topics to acquaint the reader to the dynamics and measurement equa-

tions. The range-rate measurement is explained in the next chapter when the

ENRS is developed. The following sections have been excerpted from Chapter 4

of Stacey's thesis, and the reader should review his thesis if a detailed explanation

of the Range/Range-Rate System (RRS) is needed.

3.3.2.1 RRS Model Equations. The RRS error state vector is composed

of 26 elements (shown in Table A.5, Appendix A). The RRS states occupy numbers

S IMS + I through S,;, +26 in the complete error state model, where SIN S represents

the' total number of states used to model the INS subsystem in the truth model.

The first two RRS states are simple random constant (bias) states which model
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the effects of user hardware (RRS interrogator) range and range-rate calibration

errors, respectively. Coupling of these states into the RRS measurement equation is

presented in the next subsection. The error state model equation for these states is
(19)':

{ 6 I [ 0 J {:z (3.3)
where

Xz, = range equivalent of interrogator bias
Xb = velocity equivalent of interrogator bias

The initial state estimates and covariances for these states are (19):

and
Pb,:6.(to) = f  0(3.5)

L 0 10-4ft 2/sec 2

While the two states discussed above are common to all RRS measurements,,

there exist two sources of errors which are unique to each individual transponder.

First is the error due to transponder surveyed position u' rcertainty (x, y, z compo-

nents in earth-centered earth fixed (ECEF) frame (2)), and second is the error due to

atmospheric propagation delays between the user and each individual transponder.

The three position error sources are well modeled by random bias states and the

atmospheric error states are represented by first order Markov processes. Then for
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each transponder, four states are used to define error sources (19):

.i 0 0 0 0 Xi w ,
0 0 0 yi + w6=/ .0 0+ ; (: 6)

i0 0 0 0 ziw',

1m 00t, Watmi

The subscript i in the equation above denotes the ith transponder and r = 300 sec

is the transponder atmospheric error state time constant. The initial conditions for

these states are (19):

Xz,Y,z,atm(to) =0 (3.7)

25ft2  0 0 0

o 25ft 2  0 0PZ,N,z,gtm, (tv,) = -(3.8)

0. 0 25ft 2  0

0 0 0 100(PPM)2

and

E {w,,,..zg } = 0 (3.9)

0 0 0 0

, E {w,p,.,ag,(i)w.,,,t,(t + r)} = 06 (r) (?.10)

0 0 0 0.
0 0 0 3Wo

with ~-m 101°ft2. Equations (3.3) through (3.10) were developed by the Cubic

Corporation, designers of the RRS system for CIGTF, and are based on real static

and dynamic measurement analysis of the RRS (20). Once again, the set of equations

above (Equations (3.6) through (3.10)) apply to a single transponder. There are six

such sets of equations fdr RRS transponders which are used in this thesis. The

complete RRS error vector is specified in Appendix A.
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3.3.-2.2 RRS Range Measurement Equation. In CIRIS, RRS range mea-

surements aid in estimating positioia errors of the reference INS. The RRS range

measurement is derived from the time delay detected between the time at which the

reference hardware (CIRIS or NRS) sends an interrogation signal and the time at

which a reply from the transponder is received. This temporal difference is multi-

plied by the speed of light (and divided by two, to account for the "round trip" of

the EM signal) to obtain an uncorrected range measurement. Correction factors are

then applied in order to compensate for delays introduced by the propagation of EM

signals through the atmosphere and to correct for errors introduced by equipment

calibration biases (19). The uncorrected range measurement as obtained from RRS

is modeled as:

RRS =Rt + Rat, + 6R. + v (3.11)

where

RRRs = RRS range measurement, from transponder to user
Rt = true range, from transpode': to user
6 Rt,,, = range error due to atmospheric delay
R, = range error due to equipment calibration

v = zero-mean white Gaussian measurement noise

Equation (3.11) is a model for the range as determined by the RRS truth

model. It includes the true range (which is never precisely known) along, with terms

which reflect the sources of error discussed in the previous subsection.

3.3.2.3 Range Calculation From INS Data. In order to formulate a dif-

ference measurement as shown in Chapter II, two sources of range information must

be obtained. The first is the RRS range measurement which is modeled by Equa-

tion (3.11). Another range indication is computed from the INS indicated position
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and RRS (surveyed) positions. (Both the indicated INS position and transponder

surveyed position contain uncertainties which must be considered.) In this approach,

the user (INS) indicated position is represented by an R3 vector expressed in the

Litton ECEF coordinates as:
X U

-

X = YUr (3.12)

while the true RRS transponder position is represented in the Litton ECEF frame

by:

XT YT y(3.13)

gT

Then the calculated range from the user (INS) to the transponder is given by:

,X
U  XT

RN -X XT 1 7 YU {YT} (3.14)
z U ZT

Equation (3.14) may be rewritten as:

RINS ( ( Y) +,(yU.y) + (Z zT)2 (3.15)

If the nonlinear equation above is "perturbed" to reflect uncertainties in user and

transponder positions, then a first-order Taylor series may be written to approximate

the range (2, 14). The tiuncated first-order series is of the form (20):

RINS = Rt + ORI.(XTX , ,) bX.
aRxOR, NS(X,,X )

+ x~U I(XTXU)nb,4 6x, (3.16)
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After substituting Equation (3.15) into Equation (3.16) and evaluating the partial

derivatives, the INS-derived range approximation becomes (19, 20):

R-N- 
. - T- Z U z -z U

SR. S R -, I-R I IRNs

RXNS + XR~I 'Y YT YU *t5 -Z&T (3.17)
+ JR NJ] - X + JR Ns YT + /I-,R (3.r

At this point, the difference measurement may be formed as:

6 z = R,NS - RRRs

1l.;J' 1l [z,.-z,,]*z
XT - X~:U Y&, - YU6yU - [r~s JU6

[XT-U] 1X IR 1-S I 1
LNS INS1I -IR S *Z

-[11 bRatm. [I flRbt V (3.18)

The range measurement noise v has been determined to have a variance of 4 ft 2 in

the truth model when RRS range measurements occur at 6 second intervals (20, 19).

Note that the true whole-valued range (R,) formerly nresent in both individual range

measurements is cancelled in the differencing operation (2, 14). Also note that the

bracketed coefficients in the equation above appear in the H matrix presented in the

EKF update equations overviewed in Chapter II. Also note that the measurement

equations must be implemented in a single coordinate frame, the Litton ECEF frame

being the frame of choice in this thesis (11). 'Although not, presented in this thesis,

Capt Stacey does an outstanding job of deriving the necessary coordinate frame

transformations to implement all the measurement equations in his thesis (22).

3.3.3 The 30-State GPS Error Model. GPS is designed to be a highly accu-

rate, stand-alone navigation system. However, for this research; GPS is used as a

subsystem to improve the navigation solution of the LN-93 based N.RS. In a manner
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somewhat reminiscent of the RRS transponder system discussed in the previous sec-

tion, GPS navigation information is obtained from EM signal propagation through

the media (space and atmosphere) between the user (NRS) and each of the space

vehicles (SVs) which the user "locks" into a reception channel of the GPS receiver.

In a stand-alone GPS receiver, navigation information is obtained by receiving GPS

SV ephemeris data which are broadcast continuously from each active ("locked-on")

SV, correlating the phase of the signal with a matching signal in the GPS receiver,

and correcting for known error sources to produce a highly accurate range estimate

between the user and each SV which is monitored. In this thesis, uncorrected range

measurements (known as pseudorange measurements) are channeled to a Kalman

filter which provdes estimates'of the error sources. Although not used by the NIPS,

range-rate information may be obtained from GPS ephemeris in a similar manner.

As in the RRS, GPS range measurements make refinements to the NRS navigation

solution possible.

A basic dynamic error model for the GPS system was developed by Solomon

'(20) and revised in (6). However, substantial changes to the basic GPS model have

been made by Stacey (22). In the references cited (6, 20), a simplified GPS model

was assumed. It consisted of four stationary space vehicles (SVs) and did not per-

form geometry optimization calculations. In Stacey's model, a. 24-SV "optimal"

constellation based on a paper by Green (7) is modeled. Stacey's model includes

orbital calculations for all SVs, and simulates GPS receiver operation as well. These

enhancements are discussed in detail in Chapter V of Stacey's thesis (22). The mea-

surement model equations for the GPS system follow a parallel development to that

of the RRS measurement model shown previously.

3.3.3.1 GPS Error-Model Equations. The GPS error state vector is

* composed of 30 elements (shown in Table A.6, Appendix A). The GPS states oc-

cupy the thirty "uppermost" states in the NRS error state model. The first two

GPS states model the user set (receiver) clock bias and drift errors, respectively.
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The error state model equation for these states is (6, 20):.

-i dk0 XUclkbr i (3.19).iUdtkd, 0 0 XUCtkd,.

where

XUclkb = range equivalent of user set clock bias
XUclkd,. = velocity equivalent of user set clock drift

The initial state estimates and covariances for these states are (19):

xUclkd,(to) 0

and
|~kd( 9.0 X 1014ftl 0 f~~C

PudkbUCtkdr(to) =0 0 9.0 1 (3.21)[ .0 9.0 X 1010 f 2 / 9 J
Note the large uncertainties associated with the user clock states. These values

are representative of the normal receiver clock bias and drifts associated with GPS

receivers used in military'and civilian airborne applications. Until the user clock error

is determined,- it is the single largest source of error in GPS range measurements.

While the two states discussed above are common to all GPS measurements, there

exist five sources of errors which are unique to each individual SV.

One error source specific to each SV is code range quantization error. At the

heart of any GPS receiver exists a pair of interacting tracking loops (12). One of

these loops, the "code tracking loop" is the source of pseudorange error which is

modeled as a first order Markov process (12) with an exponential autocorrelation

function. Other significant error sources include the tropospheric and ionospheric

propagation delays. Both of these error sources are modeled and corrected to a large
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degree by the GPS receiver. However the uncompensated error contribution of these

error sources is still significant. Both of these are also modeled as first order Markov

processes (with different time constants). Still other sources of error which must

be included in the GPS model are SV clock error and SV position error, which are

treated as random bias states. The reader should note the strong possibility for

observability problems in a model such as this. In this case, three position error

states are used, but the measurements provide new information only along the line-

of-sight vector between the user and SV. All error sources discussed above which are

unique to each SV are included in an error state vector shown below:

i"Rd -1 0 0 0 0 00 Rd WtC

5"Rt.op 0 _. 0 0, 0 0 0 bRtrop [ WtrOP
SRjo, 0 0 100 0 0 0 0 Wio,,

1500 6RonWo

"RSCh 0 0 0 0 0 0 0 bRselk + 0

6xs 0 0 0 0 0 0 0 bxsi 0

by 0 0 0 0 0 00 Si 0

,zs, L 0 0 0 0 0 0 0 bzs 0
(3.22)

0.25ft 0 0 0 0 0 0

0 1.Oft2  0 0 0 0 0

0 0 1.0ft: 0 0 0 0

PGPs(to) ,0 0 0 25ft2  . 0 0 0 (3.23)

0 0 0 .0. 25ft 2  0 0

0 0 0 0 0 25ft2 0

0 0 0 0 0 0 25ft2

and

E {wps(t)} O, (3.24)
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0.5 0 0 0 0 0 0

0 0.004 0 0 0 0 0

0 0 0.004 0 0 0 0

E {wGPs(t)wGPs(t+r)} = 0 0 0 0 0 0 0 ft 2 /sec .6(r)

0 0 00000 

0 0 0 0 0 0 0

L0 0 0 0000
(3.25)

The GPS model depicted by Equations (3.19) through (3.25) is representative of

a military 5-channel GPS receiver operating on P-code. Once again, the set of

equations above apply to each SV. There are four such sets of matrix equations for

GPS SV errors modeled in this thesis since it ;s assumed 4 SVs are required for

receiver operation. The error-state vector is completely specified in Appendix A.

3.3.3.2 GPS Pseudorange Measurement Equation. GPS range measure-

ments aid in estimating position errors of the reference system. The GPS range mea-

surement is derived by decoding ephemeris data which are broadcast continuously

by each active SV. The user's GPS receiver (considered to be a subsystem in NRS

and ENRS) processes signals received from the GPS SVs to determine pseudorange

between the user and the SV. The range measurement thus obtained is corrupted by

several error sources 'which must be estimated and compensated.

In its simplest form, a range measuremett between a single GPS SV and the

user (in this case, NRS) may be determined as the product of propagation speed of

the EM signal and elapsed time during such propagation. Stated mathematically,

the pseudorange is given by:

c C te (3.26)

where Rf, is pseudorange, c is the speed of light in vacuum, and te represents the

time for transit of the EM signal.
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However, two major problems exist in using this simple definition for range.
First, the EM signal is not propagated entirely in vacuum. The signal originates

in space (where the assumption of vacuum is acceptable), but must subsequently

propagate some distance through the earth's atmosphere as well. Naturally, the

signal delay introduced by atmospheric propagation must be taken into account.

Second, in order to preserve any hope of accurately determining range, it is critical

to determine the EM signal transit time with an extremely high degree of accuracy.

Recalling that light (or any EM signal) propagates on. the order of 3 x 108 M/s, it is

readily apparent that even a very small error in determining the EM signal propaga-
tion time can wreak havoc on ittempts to use uncorrected pseudorange information

to improve the navigation system solution in the NRS (or any other such. system).

As a consequence of the concerns above, it is imperative to develop- a much
higher fidelity model for range estimation. A typical model for the pseudorange
measurement between the user and space vehicles is given by the following equation

(20):

RPes Rt + bRd + 6Rt,.p + 6R,, + bRs,l + bRe,, + v (3.27)

where

Rps = GPS pseudorange measurement, from SV to user
Rt true range, from SV to user
6Rd = range error due to code loop error

=,. = range error due to tropospheric delay
, - range error due to ionospheric delay

.Rsd, = range error due to SV clock error
MRvad = range error due to User clock error
V = zero-mean white Gaussian measurement noise

As in the comparable equation for RRS, the GPS pseudorange equation above
includes the true range (which can never he known exactly) along with terms which

reflect sources of error and uncertainty inherent to GPS range meaurenwnts.
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3.3.3.3 GPS Pseudorange Calculation From LVS Data. As in the RRS

subsystem, it is desirable to formulate a difference measurement in the OPS model

as well. Once again, two sources of range information must be obtained. Like the

RRS case, the first source is the range measurement which Comes from the GPS

subsystem and which is modeled by Equation (3.27). The secoh.d range estimate is

constructed by differencing INS-indicated position and SV (broadcast) positions to

calculate the range. (Note that the indicated INS position and SV position contain

uncertainties which must be considered.) The user (INS) position is represented by

an R3 vector expressed in the Litton ECEF which is repeated below for convenience.

SV position, X , is represented in like fashion.

z u  z S

x = YV ' Xs Ys (3.28)

Then user-to-SV pseudorange may be calculated as:

z u  x'S

N , 1Xu I - YU YS (3.29)

Equation (3.29) may also be written in the equivalent form:

RI = /(XU -,) + (.Y" - Y.) 2 + (, - )2  (3.30)

Invoking perturbation theory (2, 14), the nonlinear equation above is written as a

first-order Taylor series to'approximate the (INS derived) calculation of u,er to SV

range. The truncated (to firt-order) wries is expressd as:

3.15



R ,S = Rt + Ns(X s X ).

o RVS(XSXU) •XI (3.31)
+ aXU  (XsXU)..,

When Equation (3.30) is substituted into Equation' (3.31) and the partial derivatives

evaluated, the INS-derived pseudorange approximation becomes:

RIN R9 XS 45 -u bX S U.__ -R z] U1 ZU

+ [ r 7 ] Z , + [Y9 Us + [ 7Zs , .z s (3.32)

Now the GPS pseudorange difference measurement is formed as:

6z RI S - RS

- - *r~ z r'j,'.6P- , ,16-$ Ip LY IU , l 6

+ .6z~ [3;.] 6y~ 4 IRINSrI].z+ z + Ys , +rYS ZS-ZU6.,
PIR.i J LIR ,I1 J ' I 'NS1

* - [1JARd - [1]6R,,,, - [1]6R,0,

- [1] 6RSd4 - [1]6Ruv,, v , (3.33)

The pseudorange measurement noise v Stacey used has a variance of 2 ft 2 when

GPS pseudorange measurements occur every 10 seconds. It should also be noted

that the 97-state NRS truth model also has slightly higher noise modeled in its GPS

pseudoransge measurement equation. Stacey had implemented a measurement noise

variance of only 2/112,while further research reveals the actual noise variance to be
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j' fcr cbIs ty!:- of GPS m, -el (12). Of course, the filter measurement noise was

correspo'dingly inc.-ase,-'. An° noted in the RRS case, the true whole-valued range

(Rt) fn;-rmerly prese .." , the individual pseudorange representations (Rs and RGPS)

is cancelle(' '-, V- t .&FTrencing -ppration. The T .- :ted coefficients in the equa.ton

a:,ove are Used in tNe H !.;atria, appear, in the %.' apdate equations shown in

C!, apter JH.

. &'.!;,,tioa to a.41-Sto.e £A..? Error 14odei

The NRS developed by Stace. :o".Swe, . statei3 in both it. .1th and filter

modIla (22). A one-run Monte Caz!o ai- sis,. a 2-hour flight trajectory of Stacey's

NRS using MSOFE on a 3 MIP VAX worl'.i,ttiE'n takes over 18 hours to complete.

In order to reduce the coc vutatio:,al I ,den, the INS truth and filter model in the

E.4-11S is further reduced fiom .t! 72 .tates Stacey usecl down to the 41 states fol-

I .)wing the rycommendationis of Lewantowicz and Keen (10). This 31 state reduction

significantly dec-ea.s '.he computational time needed for analysis of the NRS and

ENRS filtei's, but does, not significantly affect the estimation accuracy of the errors

of interest (position, vr.locity, and attitude). Tables A.7 and A.8 in Appendix A list

the 41 states used in this new INS truth model.

It is necessary to confirm Lewantowicz and Keens' claim that a 41-state error

model gives essentially the same solutions for position, velocity, and attitude error

as the full-order truth model (10). Their methodology for arriving at 41 states,

based on their 68-state truth model for the INS which had already eliminated states

69 through 93 from the 93-state 'truth model, was to eliminate 15 states which

contributed one or more orders of magnitude less error contribution to the attitude

and velocity error estimates than the states that were retained. They also combined

12 other states with errors which exhibited similar behavior, but were more dominant

(10). This thesis takes a slightly different approach, by simply eliminating all the

states they recommend, including the 12 states they combined with other states.
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This one deviation from their recommendations doesn't appear to affect the results

adversely. Tables A.7 and A.8 in Appendix A contain lists of the 41-state INS error

model. Appendix C gives a 10-run Monte Carlo comparison between the 93-state

LN-93 truth model and the 41-state truth model discussed above. As shown by

Figure 3.1 (and Appendix C), the 41-state model does give position, velocity, and

attitude error-states almost exactly matching the 93-state model over the two-hour

fighter flight profile. At this point, the 41 error-state INS model is considered the

truth model for this thesis.

3.5 The 97-State NRS Error Model

By merging the 41-state INS model, the 26-state RRS model, and the 30-state

GPS model, a new 97-state NRS model is formed. This NRS model performs as well

as Stacey's 128 state model did, but does so 3 times faster due to the elimination of

31 INS states. Chapter V discusses the performance of Stacey's NRS model and the

97-state NRS model and. compares their performance to each other and various other

filters which are described in this and the following chapter. Appendix E contains

the results of a 10-run Monte Carlo analysis performed on the 97-state NRS filter.

3.6 The 69-State NRS Filter Model

Once the 97-state NRS truth and full-order filter models are developed, filter

order reduction is performed. The stat, limension for the ENRS post-processing

filter is limited to 70 states, this number was set as the target for a NRS reduced-

order filter. Recognize that only the number of filter states is to be reduced; the

truth model remains at 97 states.
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Using research accomplished before as a basis (12, 5), the Kalman filter's GPS

error-model was reduced from 30 states to only 2 states (10, 12). The two remaining

states are the receiver clock bias and drift states (see Appendix A or GPS error-state

discussion), leaving a 69-state NRS filter. Looking at the plots of the 97-state NRS

filter in Appendix E, note that the two GPS receiver clock error-states are many

orders of magnitude larger than the eliminated code drift, atmosphere, SV clock,

and SV position error-states. This huge magnitude difference gives an indication

as to why these states can be eliminated while retaining the two dominating states,

(see Chapter II's filter order reduction section). However, these states cannot simply

be dropped with the expectation of adequate filter performance. The filter tuning

techniques of Chapter II are exploited, noting each of the eliminated states is part

of the pseudorange measurement equation. Thu3, the measurement equation noise

(see Equation (3.33)) is increased to 'compensate for the eliminated states.

As stated previously, the truth model measurement noise variance was 9 ft 2 .

Chapter II recommends adding the filter covariance values of the eliminated states to

the measurement noise variance to compute a new value for the measurement noise

variance. Performing this operation gives a new value of approximately 225 ft 2 (9

ft 2 original noise + .09 ft 2 code loop + 6.3 ft 2 atmosphere + 16 ft 2 SV clock + 64.3

ft 2 SV position). Remember,, this new value of the measurement noise is only a first

best guess, further tuning may be needed for optimum filter performance. Chapter

5 discusses and compares the 69-state NRS filter performance to the other filters

analyzed in this thesis. Appendix F contains the plots of the 69-state reduced-order

NRS filters performance against the 97-state truth model.

3.7 Summary

This chapter reviewed the LN-93 and Stacey's NRS error-state models, and'

then developed' 97-state and 69-state error models by eliminating 31' INS and 28

GPS states, respectively. These ,three NRS filters form a baseline to which the

3-20



ENRS filters developed in the next chapter are compared.. Comparisons of filter

performance can be found in Chapter V while the state variable plots are located in

Appendi:es D, E, and F.
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IV. The Enhanced Navigation Reference System (ENRS)

4.1 Overview

This chapter givcq a complete description of the ENRS. First, an explanation

of DGPS and how it is implemented at CIGTF is given. Second, a DGPS error

model is developed. Third, the DGPS error model is combined with the 41-state

INS and 26-state RRS models from Chapter III to form an 89-state ENRS model us-

ing only DGPS and RRS range measurements to update the filter. Fourth, a 48-state

reduced-order ENRS filter is developed. Fifth, the DGPS delta-range measurement

equation is derived and merged into a 22-state reduced-order DGPS filter (no RRS)

to speed the tuning of delta-range measurements. Sixth, the RRS range-rate mea-

surement equation is overviewed and merged into a 46-state CIRIS filter (no DGPS)

to speed tuning of the range-rate measurements. Finally, DGPS delta-range and

RRS range-rate measurements are merged into the 48-state reduced-order ENRS

filter to complete the development of a post processing ENRS filter of less than 70

states.

4.2 Differential Corrections to GPS Measurements

This section discusses the theory behind DGPS as it is is being implemented at

CIGTF. Intermetrics, Inc. is the government sponsored contractor responsible for the

DGPS reference station at CIGTF (1,5). Personal-interviews were conducted with

Mr Darwin Abbey and Mr Scott Dance of Intermetrics to determine how differential

corrections to GPS are implemented at CIGTF. The following discussion of DGPS

comes directly from these interviews and the DGPS error model created in the next

section is a combination of Intermetric's description and a course given by Navtech

Seminars on DGPS error models (1, 5, 18).

In order to apply differential corrections to GPS measurements, a ground based

reference receiver (GBR) is needed as well as the airborne GPS receiver (ABR) used
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in the NRS. Figure 4.1 shows the basic DGPS system as it is being implemented

at CIGTF. The ground based receiver must be capable of tracking all SVs in view,

possibly as many as eleven when the full GPS constellation is placed in orbit. The

GBR's antenna position has been permanently fixed and surveyed to within centime-

ter accuracy. A high accuracy rubidium clock is used in place of the GBR's normal

clock, greatly decreasing the large clock errors common to the ABR as discussed

in Section 3.3.3.1. Using the transmitted SV ephemeris data, the GBR computes

its position (different from the surveyed position) kn6wn as the ground truth. The

data (pseudorange measurements, SV transmitted corrections, GBR applied correc-

tions, ground truth, clock errors, etc...) is fed to a 30386 personal computer which

then estimates the SV position errors, SV clock errors, and atmospheric delays with

great precision. Because the GBR's true position is accurately known and its clock

errors are much smaller than the ABR's, the SV position and clock errors and atmo-

spheric delays are highly observable. This is unlike the NRS GPS model where the

large ABR's clock errors and dynamics cause these states to be largely unobserv-

able. These errors, now called differential corrections, are time tagged and stored on

magnetic tape or disc. Note th..t the differential corrections could be immediately

transmitted via a data link fc.: real-time differential corrections if t e need ever arises

(1,5)

-Remembering that the N'RS is a post-processing filter, the m r airborne pseudo-

range measurements (which are also stored magnetically and tim tagged) now have

the differential corrections applied before they are analyzed in tie post-processing

filter. Of course, this assumes the GBR is tracking the same f ur SVs the ABR

was tracking (a good assumption if the ABR is within the CIRI, test range). Us-

ing differential corrections in this manner, the SV clock error i eliminated from

each pseudorange measurement and the SV position errors are rearly eliminated.

Depending on the distance between the ABR and the GBR durng the flight pro-

file, the atmospheric propagation errors can be almost totally eliminated for close
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trajectories or greatly reduced for flights within 200 miles of the GBR. Even with

long-range DGPS (flights which extend more than 200 miles from the GBR), the

post-rocessing in the 30386 personal computer eliminates some of the atmospheric

propagation errors. The largest remaining errors in the pseudorange measurement

are the ABR clock errors (see Section 4.2.2). With this basic knowledge of DGPS,

a new DGPS error model is now developed assuming that differential corrections

have previously been applied to the raw pseudorange measurements from the ABR
(1, 5, 18j.

4-.1 The 22-State DOPS Model. The DGPS error-model is composed of 22

states (shown in Table A.9, Appendix A). Note the DGPS states are almostL identical

to the GPS states except for elimination of the SV clock error through differential

corrections, and removal of the SV code loop error. Dance states that compensation

for the code loop error (truth and filter models) is provided by the measurement

noise variance in the pseudoranige measurement as implemented in this thesis (5).

While the names of the states are the same, only the receiver clock error states are
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modeled exactly as in the NRS. These two error-states are again modeled by (22):

i XUClkb = 0 1 XUclkb (4.1)

XUClkdJ 0 0 XUdkdr

where

XUCIkb = range equivalent of ABR clock bias
XUCIkd, = velocity equivalent of ABR clock drift

Again the initial state estimates and covariances for these states are (22):

{ :Akb(to) = [ (4.2)
'Uakd, (to) 0

and

PUclkb,Uclkd, (to) = 9.0 X10 14 ft 2  0 t2/SeC2  (4.3)0 9.0 X l0O~ft2sc

As noted previously, until the ABR clock error is determined, it is the single largest

source of error in DGPS range measurements. While the two states discussed above

apply to all DGPS measurements, The troposphere, ionosphere and SV position

errors are unique to each SV. Note that these errors have a much smaller contribution

after differential corrections than in the GPS model (see Section 3.3.3.1) (18):

bRtrop g- 0 0 0 0 MRtrop Wtrop

Ro,, 0 -jso 0 0wi

-s 0 0 0 0 0 6Xs, + 0 (4.4)

bysi 0 0 0 0 0 by ,0

zsi 0 0 0 0 0 bz5. 0
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1.ft
2  0 0 0 0 ]

o 1.ft2  0 0 0

PDGPS(to)= 0 0 .35ft2  0 0 (4.5)

0 0 0, .35ft2. 0

[ 0 0 0 0 .35ft2

and

E {wDGps(t)1 =0 (4.6)

0.001 0 0 0 0

0 0.0004 0 0 0

E {WDGPs(t)wDGPS(t + r)} = 0 0 0 '0 0 (ft 2/sec) ' 6(r) (4.7)

0 0 0 0 0

0 6 0 0 0

Once again, the set of equations above apply to a single SV. The initial covariance

values in Equation (4.5) and atmospheric error dynamics noise variances in Equation

(4.7) were obtained from (18) and 'are modeled slightly larger than Abbey and Dance

(1, 5) recommend since a conservative filter is develened. There are four such sets of

matrix equations for DGPS SV errors modeled in this thesis. The error-state vector

is completely specified in Appendix A.

4.2.2 DGPS Pseudorange Measurement Equation. The DGPS, pseudorange

measurement equation is developed identically to the GPS pseudorange measurement

equation of Section 3.3.3.2. After applying differential corrections, the measurement

equation is 'modeled as:

RDG'Pg=. Rt + 6Rt,o, + 6RAo, + 6Ru, + v (4.8)

where
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RDGPs = DGPS pseudorange measurement, from SV to user
Rt = true range, from SV to user
,Rrop = range error due to tropospheric delay
6Ro = range error due to ionospheric delay
6 Rucjk = range error due to ABR clock error
v = zero-mean white Gaussian measurement noise

As in the comparable equation for GPS (Equation (3.27)), the DGPS pseudorange

equation above includes the true range (which can never be known exactly) along

with terms which reflect sources of error and uncertainty inherent to DGPS range

measurements.

4.2.2.1 DGPS Pseudorange Calculation From INS Data. As in the NRS

subsystem, it is desirable to formulate a difference measurement in the DGPS model

as well. Once again, two sources of range information must be obtained. Like the

NRS case, the first source is the range measurement coming from the DGPS reference

station and modeled by Equation (4.8). The second range estimate is constructed

by differencing INS-indicated position and SV (broadcast) positions to calculate the

range. Following the same derivation as in Section 3.3.3.3, the DGPS difference

measurement is formed as:

6z-=Rt~ -BR ~
b INS RDGPS

[sXs~xl FYS YU]b ~ ZU Z U
= - LIRINSI JU - I .RINSI I " - I.IWINI

+ -R U~ *6X + [I -~ *6y + I
RINSI IR,.IRINSI L +[INSJ

[lI' Rt op [1]ion [ [RCk -. b (4.9)

The pseudorange measurement noise variance is 9 ft 2 when DGPS pseudorange mea-

surements occur every 10 seconds. As noted in the NRS case, the true whole-valued

range (Rt) formerly present in the individual pseudorange representations (RIMS and
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RD,,P,) is cancelled in the differencing operati on. The bracketed ( oefficients in -the

equation above appear in the H matrix used in the EKE' update equations shown inl

Section 2.2.

4.3 The 89-Slate ENVRS Error Mlodl

The 22-state DGPS error-model dleveloped is now merged with thle 41-state

INS model and 26-state RRS model to form an 89-error-state ENRS model. At this

point, only DGPS pseudorange and RRS range measuiremnents are available to the

filter for position updating. A 10-run Monte Carlo analysis is performed and the

plots of filter performance are !ocated in Appendix G. This filter serves as a baseline

for DGPS measurements, and a discussion of its performance relative to the XRS

*filters is given in Chapter V.

4.4 The 48-Slate E.ARS Filter (Position Mtasttrrnenfs Only)

* Now that a full-order filter has been discussed, a' reduced-order filter of 70.

states or less is developed. The first step in filter-order reduction uses the method

discussed in Sections 2.3 and 2.4. Since all the DGPS error-states are small except for

the ADR's clock errors, they are eliminated. All 20 states eliminated are part of thle

pseudorange equation, so again the measurement noise v is inrreased to Compensate

for the eliminated stts h rgnlmeasurement noise variance is 9ff2 , and'the
modified no;.e variance is, calculated to be app~roximnately 25ff. Once again, this is

only a first best guess and additional filter tuning may be necessary (see Chapter

V).

At this point ti e 89-state model has been reduced to 69 states by thle eli'mina-

tion of 20 I)GPS states. However. D(GPS (lelta-range and RIIS range-rate inwasiure-

rnent equations are tc be implemented and the additional computation time required

to imiplement 4 DC!"S delta-rang and 6 11115 range-rate lieisuarenlents slows thle

Monte Carlo aniklysi. down by 50 percent over the NI(S 69-statr filter using only
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position aiding measurements. Further order reduction is necessary to ensure the

post-processing filter can complete its analysis of a 2-hour flight trajectory within

24 hours. For this reason, an additional 21 INS states are eliminated to reduce the

ENRS filter to 48 error-states. Once again the recommendations of Lewantowicz

and Keen are followed for this INS state reduction (10). The new 20-state INS filter

is formed by elimination of states 21 through 41 of the 41-state INS model, and

this model is shown in Tables A.7 of Appendix A. Zero-mean white-gaussian noise

(l0- 6 ra(P/.-c) is added to dynamics equations of the first two INS states (related

to position errors) to compensate for this filter order reduction (see Section 2.4).

The plots of filter performance for the 48 error-state ENRS filter (no velocity aid-

ing) are found in Appendix H with a discussion of filter performance relative to the

previously designed filters in this thesis found in Chapter V.

4.-5 DGPS Delta-Rangf Measurrmfnis

In a manner similar to the GPS and DGPS pseudorange measurement equa-

tions development in Sections 3.3.3.2 and 1.2.2, the delta-range measurement equa-

tion can also be developed. Typically, the velocity between the user and SV is not

directy measured in a GPS receiver. Rather, the number of carrier-cycles for a

period of time is counted, which calculates the change in pseudorange over a time

interval, not the time rate of change of pseudorange (12). For this thesis, since

error-statei are modeled an(d not the true receiver operation, the previouls'pseudor-

ange measurement (see Equation (4.8)) is subtracted front the current pseudorange

measurem'-nt and divided by 'the time interval between tnea,,'irements to yield:

hI,,,, = + b + V (4.10)

where
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DGPS = DGPS delta-range measurement, from SV to user
t = true delta-range, from SV to user

bRudk = delta-range error due to ABR clock drift error
v = zero-mean white Gaussian measurement noise

Note that the atmospheric errors in Equation (4.8), once subtracted, are small and

are ignored. The delta-range equation above includes true delta-range (which is

never known) along with an ABR clock drift error term.

4.5.1 DGPS Delta-Range Calculation From INS Data. 'As 1n the GPS subsys-

tem, it is desirable to formulate a difference measurement in the DGPS delta-range

model as well. Once again, two sources of delta-range information must be obtained.

Like the pseudorange case, the first source is the delta-range measurement which

comes from the DGPS subsystem and which is modeled by Equation (4.10). The

second delta-range estimate is constructed by taking the time derivative of Equation

(3.30). As a reminder, Equation (3.30) defined R,, , as:

R,(z , - XS) 2 + (YU - Y 5) + (ZU -zs)2 ]"2  (4.11)

and taking its time derivative yields:

RIMs SIN!/ RIMS (4.12)

where:

SIS Yx - ( -is) + (YU - Y v -i.s) + (z-- l (4.,13)
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Remember from Section 3.3.3.3 that:

XU= [ X, YU zv T  (4.14)

XS= [Zs ys Zs]T (4.15)

so that:
= [iu iuv Zulr  (4.16)

X S = S [ iSIY T  (4.17)

Invoking perturbation theory (2, 14), Equation (4.12) is written as a first-order

Taylor series to approximate the (-INS derived) calculation of user to SV delta-range.

The truncated (to first-order) series is expressed as:

A =RAt + 8RNS(XSV,XU1,XSX,) "

DRINS(XS, XU, XS, xe,,

k,, ,+ xsi(Xs.X.XsX). - -ir xS

OX S  1(xs'XUXS'XU)%O

+ oR,,NS(XS, XU, X,, 0 .X

+ R XsNu(XS9sXt, X 5 X0 bx)q,

(4.18)

Because the SV position errors are modeled as bias (constant) terms, their time

derivative is zero, so that 6X = 0. When Equation (4.12) is substituted into

Equation (4.18) and the partial derivatives evaluated, the INS-derived delta-range

approximation becomes:

RIS , + [(R7,X)(i , - i) - (R,,,2)(SN)(XU -_z)J6z

+((R;,5 )(y - - (R ,,,)(SN.)(,U - s)16Z

(R,)(,- - R7)(1,0s)(z, - zs)16zu
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[(R-' -)(xu -

+[(R725)(vu - Ys)Vi,

+ (R.,)(z, - zs)I6 *U

-[(R7I~s)(.i -. s - (R7 2 )Ss(x -X,)]bX,

- (R7, 3)(ii - is) - (R, 2 )(S,Ns)(YU -,]y

-[(R-2 )(u - is) - (R -3
2

)(SN)z-

(4.19)

Now the delta-range difference measurement is formed by subtracting Equation (4.10) from

(4.19):

6z =AINS- ADGPS

= (R725)(iu - i)- (R-3j1)(SINS ,)(XU -. )]X

+ [(R7)(u - u) R7 2 )(SIls)(YU-

[(R-2 -)~ -;s5 ) - (R 73 2 )(SINs)(zU -ZS)]6ZU

+ [(R7,N5)(XU -Sl'

[(R725)(YU - Y4

+ [(R-25 z -'

- [(R75)(±~- i5)(R,3)(S 1 5 (~-x)4z

- [(725)u~ -ji~)(R731
2)(SINS)(YU-

-[(R72 5)(ku - s) (R7,-3 )(2 ,)z

-iAR~-v (4.20)



The variance of the delta-range measurement noise v used is 0.16 ft 2 when

delta-range measurements occur every 10 seconds (12). The true whole-valued 'range-

rate (R ) formerly present in the individual delta-range representations (RNS and

RDG1s) is cancelled in the differencing operation. The bracketed coefficients in the

equation above appear in the H matrix of the EKF update equations shown in

Section 2.2.

4.5.2 The 22-State DGPS Filter (No RRS). Now that the DGPS delta-range

model has been derived, it is nccessary to implement this algorithm into MSOFE

to analyze its performance. To speed up the process of implementation, a 22-state

red 'ced-order filter is, modeled. This filter contains the 20 INS states discussed in

the 48-state ENRS filter and 2 DGPS clock states. No RRS states are included in the

filter or truth model, so the full-order truth model for this system is 63 states (41 INS

and 22 DGPS). A 10-run Monte Carlo analysis using the 2 hour fighter flight profile

on this filter is completed in 5 hours, allowing two or three analyses per day until the

algorithm is properly implemented and the filter well-tuned. The filter performance

plots from the fighter flight profile are located in Section 1.1 of Appendix I. For a

robustness check, the filter was then analyzed using a 10-run Monte Carlo analysis of

a 2-hour straight flight profile. These filter performance plots are located in Section

1.2 of Appendix I. A discussion of the results of this filter implementation can be

found in Chapter V.

4.6 Transponder Range-Rate Measurements

In a manner similar to the DGPS delta-range measurement equation develop-

ment in Section 4.5, the RRS range-rate measurement equation can also be devel-

oped. From Equation (3.11), the RRS range-rate equation is modeled by:

S,= Re +h~v + V (4.21)
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where

= RRS range-rate measurement, from transponder to user
A = true range-rate, from transponder to user
b/BV range-rate error due to calibration bias error
v = zero-mean white Gaussian measurement noise

Again the atmospheric error is small and can be neglected. The delta-range equation

above includes true range-rate (which is never known) along with an equipment

calibration velocity error term.

4.6.1 RRS Range-Rate Calculation From INS Data. As in the DGPS sub-

system, it is desirable to formulate a difference measurement in the RRS range-rate

model as well. Once again, two sources of range-rate information must be obtained.

Like the delta-range case, the first source is the range-rate measurement which comes

from the RRS subsystem and which is modeled by Equation (4.21). The second delta-

range estimate is constructed by taking the time derivative of Equation (315). As

a reminder, Equation (3.15) defined RNs as:

RINS - [( - ZX) + (y, - Y)2 + (z" - Zr)2 I1/2  (4.22)

and taking its time derivative yields:

RIMs = TNs / RINS (4.23)

where:

TINS = [(Xe - 'T)(ZU) + (YU " UT)(YU) +(zU - zT)(zU)I (4.24)

Remember from Section 3.3.2.3 that:

X= [XU y1t Zt]T (4.25)

X2r [XT r Zr]T  (4.26)
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and again X, is defined:

J1 = [.i Yv zv] r  (4.27)

The transponders do not move, so the velocity term XT = 0. Invoking perturbation

theory (2, 14), Equation (4.23) is written as a first-order Taylor series to approximate

the (INS derived) calculation, of user to transponder velocity. The truncated (to first-

order) series is expressed as:

ANS + aINS(XT,XU,XU) •6XT
$XT (XT'XU'XU)nO.M

+ ORINS(XTXU ( ,XU )R. 6X

+ RINS(XTXU, (XX,X),,, u

(4.28)

When Equation (4.23) is substituted into Equation (4.28) and the partial derivatives eval-

uated, the INS-derived range-rate approximation becomes:

RINS AtR + [(R-25)(.iu) - (R-3, 2 )(TINS)(XU -TbX

+ [(RT' 5)( u) - (R 31 2)(TNS)(yU

+ [(R- )(iu) - (R732 )(TIN )(z - ZT)]6zU

+ [(R7 5)('Z - T)-6zu

+ [(R JNS)(yu - yh

+ [(R-')T.()(ZU ZT)16'U)

[(R,-')(z) - (R-, 2 )(TNS)(zv - zr]bXT

+ [(R-Ts)(ju) - (R7-3 2)](TINS)(yU y_(RI)TN)z IN ")]by".

- [(R725)(iu) - (R-,s')(T1Ns)(zU - ZT)16Z7
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(4.29)

Now the range-rate difference measurement is formed by subtracting Equation (4.21) from

(4.29):

z k INS - RRRS

[(-N) .u (RT (INS )(U -X)1

+ ~ ~ -, (R5)i)(R{)(TINS)(U 
-T)

6 U[(R-')( ) - (R,2)(TINS)(U - z.)]j6U

+ [(RT 1 )( ',2 -

+ [(R-) ( R) - -T)])]u

+ [(R72)(z) - -/,7

[(R,,,,)(±,, - .r.)] )-,

[(R;,,)(.iu) - (R 2 )(TINs)(yU Xk)1 61&[(R-' ) (R -312
(RSO ) IS )(TN,)(YU -x)]6YT

S[(R-' )(i) - (R- 2 )(TJNS)(zU - zT)]6zT

- [1]6Rsv - v (4.30)

The variance of the range-rate measurement noise v is 0.09 ft when range-rate

measurements occur every 6 seconds (19). The true whole-valued range (R,) formerly

present in the individual delta-range representations (RINS and R,,o) is cancelled in

the differencing operation. The bracketed coefficients in the equation above appear

in the H matrix of the EKF update equations shown in Section 2.2.

4.6.2 The 46-State CIRIS Filter (No DGPS), In a manner similar to the 22-

error-state DGPS filter, a 46-error-state CIRIS filter is developed to implement the
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RRS range-rate measurement algorithm. The filter model consists of the 20-state

INS model and 26-state RRS model. A 10-run Monte Carlo analysis using the 2-

hour fighter flight profile is again used to tune the filter, and the filter performance

plots are located in Section J.1 of Appendix J. As a robustness check, another 10-

run Monte Carlo analysis using a 2-hour racetrack flight profile is performed. The

filter performance plots of this analysis are located in Section J.2 of Appendix J. A

discussion of this filter's performance is found in Chapter V.

4.7 The 48-State ENRS Filter (Position and Velocity Measurements)

The culmination of the work in many other theses is finally reached when the

20-error-state INS model, the 26-state RRS model with'range and range-rate mea-

surements, and a 2-state DGPS model with pseudorange and delta-range measure-

ments are assembled into the 48-error-state ENRS filter. This filter is tuned using a

10-run Monte Carlo analysis using the fighter flight profile, and a final 25-run Monte

Carlo analysis is performed to demonstrate this filter's performance relative to all

the other filters analyzed in this thesis. The filter performance plots are found in

Appendix K while a complete discussion of the final results is located in Chapter 5.

4.8 Summary

Thischapter steps through the development leading to the 48-error-state ENRS

filter. Differential corrections to GPS measurements are first discussed, followed by

development of a DGPS model. Then full- and reduced-order models and delta-range

and range-rate measurement equations are developed. Finally, all this data is merged

into a 48-state post-processing ENRS filter designed to determine the position and

velocity of the test article accurately so its performance can be evaluated. Remember,

the truth model throughout this chapter is composed of 41 INS error-states, 26 RRS

error-states, and 22 DGPS error-states. All NRS and ENRS filters' performance is

discussed in detail in the next chapter.
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V. Results of Filter Implementations

5.1 Overview

This chapter evaluates the performance of all the filters implemented in this

thesis. Reduced-order filters are compared to their full-order counterparts, GPS

filters are compared to DGPS filters, and all the filters are analyzed relative to the

current CIRIS system. As a final presentation of results, a section is given containing

tables of the filter tuning parametersQ(t) and R(t,) if different from their 'truth

model values for all the filters implemented in this thesis. Before any analysis of

filter performance can begin, an important assumption pertaining to three of the

truth/filter models in this thesis must be explained to the reader.

5.1.1 The Double Precision Factor. The truth/filter models implemented

previously by Solomon, Snodgrass, and Stacey utilized Fortran on VAX mainframe

and workstation computers (20, 19, 22). Their computer code was normally com-

piled, linked, and executed using "single precision" (the 7 most significant numbers

are stored). For Solomon and Snodgrass, whose work dealt mainly with implement-

ing an updated CIRIS filter without GPS, this method was more than adequate.

However, when Stacey implemented his GPS subsystem and brought in pseudor-

ange measurements, all his filters utilizing GPS diverged and could not be tuned

properly. As seen in Figure 5.1, the typical truth model GPS clock bias error state

attains values requiring much more 'than 7 significant figures to estimate the state

adequately. As Stacey had mentioned in his thesis, "double precision" (14 most

significant figures) is required for optimal filter performance.

Because the clock bias grows to such a large number, executing in single pre-

cision mode denies the filter the 1- or 2-foot clock bias state estimation accuracy re-

quired for accurate pseudorange meaurements. However, simply switching to double

precision is not as easy as it seems. When Stacey's 128-state model algorithms were

5-1'



K

?.OOE+08

2.003+08

1.00E+08

a.010 100.00 30.-0°00" 00 700 80

as

'' o o.oO°°a

2.003+00 ...

1.OO0I 08 -°.°*

0 1 000 2000 3000 4000 '0000 6000 7000 6000

Time (see)

Figure 5.1. Typical GPS Clock Bias Error State for Two Hour Flight Profile

modified to double precision, neither the VAX mainframe nor workstation computers

had enough memory available to link the code. The same problem arises with the

97-State NRS and 89-State ENRS full-order filter models. However, all the reduced-

order filters in this thesis are compiled, linked, and executed .in double precision

mode.

At this point an assumption is made so that the full-order filters can be, ana-

lyzed, and the reduced-order filters have benchmark filters for comparison purposes.

All the full-order filters truth models have their 2 GPS clock states' initial covariance

values reduced four orders of magnitude (sve' Section 3.3.3 or 4.2.1). By reducing their

magnitudes, the filters are able to estimate the clock'bias error-state adequately in

single precision mode, and these 2 clock states still maintain errors several orders of

magnitude larger than any other error states. Notice in Figures D.8, E.8, and G.8,

that at the very end of the two-hour Oight profiles the clock bias state approaches the

limit of single precision and once again starts to diverge slightly, causing the clock
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drift state to diverge also. However, overall, these full-order filters are tuned well

enough to produce accurate navigation solutions. Note that, if these clock states

were not so much larger in magnitude than the other error statcs, this approach

would not be valid and the results could not be accepted without serious reserva-

tions. Also note that the CIRIS filter without the GPS subsystem does not need

double precision, and it is not implemented in this filter.

In summary, the 128- and 97-state NRS and the 89-state ENRS truth and

full-order filter models were run in single precision mode .with the GPS clock crror

truth states' initial covariance values reduced 4 orders of magnitude. This modifi-

cation in no way affects the reliability of these filters when used as benchmarks, as

the 2 GPS clock error-states are much larger than any other error states, and the

GPS clock bias state continues to be the largest source of errors in the pseudorange

measurement by several orders of magnitude. The 46-state CIRIS filter is also run in

single precision, but it does not model GPS states, so double precision is not needed.,

All of the reduced-order NRS, DGPS, and ENRS filters (evaluated against 97-state

NRS, 63-state DGPS, and 89-state ENRS full-order double precision truth models)

are programmed in double precision so the performance of these filters is in no way

compromised.

5.2 The NRS Filters

This section evaluates the performance of the 3 NRS filters analyzed in this

thesis. Remember that the NRS models the error states 'of a LN-93 INS with baro-

altimeter, RRS transponders with range measurements, and GPS recei er with pseu-

dorange measurements. Stacey's 128-State NRS filter is examined first. After some

preliminary tuning runs, its performance is outstanding. Then the 97-State NRS

filter is analyzed. It too produces a navigation' solution one order of magnitude bet-

ter than CIRIS. Finally, a 69-state reduced-order NRS filter is examined. Although
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not as impressive as the first two NRS filters, its performance is well above that of

CIRIS.

5.2.1 Stacey's 128,State NRS Filter. As the largest truth/filter model in this

thesis, taking over 8 days to complete a 10-run Monte Carlo simulation, this filter'

also had the least amount of tuning performed on it for optimal state estimation..

Appendix D contains the plots of the filters performance on the main states of inter-

est. While some of the GPS states require further tuning, overall, this filter performs

well, with the possibility of a significant increase in precision over CIRIS as it is im-

plemented today. Remembering this filter was implemented in single precision, Table

5.1 contains the temporal average of the ensemble average of true filter estimation

errors (1o) for the position, velocity, and attitude errors over the two-hour fighter

flight profile. Ensemble average is the average of the error-states for the number of

Monte Carlo runs performed in the analysis over the 2-hour trajectories. This vector

is the at,, in' the filter performance plots in Appendices D through K. The scalar

temporal average is simply the average of the ensemble average for the 2-hour tra-

jectories. As a reminder from Chapter 1, CIRIS specified accuracy is also included

in this and all tables in this chapter for comparison purposes. Attitude is included

in this and future tables simply to round out the navigation solution and show how

INS state reduction affects these error states. Remember, no attitude measurements

are present in any of the filters implemented in this thesis.

Table 5.1. Temporal Average of the Ensemble Average of True Errors for Stacey's
128 Err r-State Filter

Filter Lati- Longi, Alti- East North Up East North Azi-

tude rude tude Vel Vel Vei Tilt Tilt muth
(ft) (ft) (ft) (fps) (fps) (fps) (arcs) (arcs) (arcs)

CIRIS 114.00 14.00 [40.00.11 0.100 1 °.00 1 0.400 11 1 J .0.
128-NRS i 1.59 2.35 5.58 0.015 0.011i 0.45 1.6 I 2.02 I 83H
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Stacey never resolved the precision problem for this filter due to time con-

straiats and was only able to perform a one-run Monte Carlo simulation. The tun-

ing performed in this thesis on his filter ini lved only the random bias states in the

RRS and GPS subsystems. RRS range bias and transponder position error states

and the GPS SV clock and SV position error states have a dynamics noise strength

Q(t) addition of approximately 10-3ft 2/sec ft. the performance seen in Appendix

D. Although not yet optimal, the filter's performance at this point speaks' for itself.

Using only RRS range and GPS pseudorange measurements, and once adequately

tuned, St,cey's filter will produce a navigation solution one order of magnitude more

acctrate than CIRIS.

5.2.2 The 97-State NRS Filter. This filter is only different from Stacey's filter

by use of the 4 1-state INS model instead of Stacey's 72-state model in the truth and

filter models. Since the 41-state model provides true error states which almost match

those for the 93-state LN-93 error model (see Appendix C), this filter's performance

should also be very close to that of Stacey's 128-state filter. This simulation was also

implemented n single precision, with the'2 GPS clock error states' initial covariance

values decreased 4 orders of magnitude. Table 5.2 compares the 128- and 97-state

NRS filters to each other and to CIRIS..

Table 5.2. Temporal Average of, the Ensemble Average of True Errors for 128- and
97-State NIS Filters

Filter Lati- Longi- 1 AltiI East .North Up East North Atzi-rude tude tilde Vel Vei Vel Tilt Tilt muth
(ft) (fj) (ft) (fps) (fps) (_Ps) (arcs) (arcs) (arcs)

Cf itus 1 1 0 4-.00 Ii 1o40,J .. ==;I
2-N!¢S !.5.9 2. . .l5 .10.1(HG.0.5 1.65 W 0.4 0 7

97-NRS 1'.37- 2.71 ..2S 0.01101 15 " 107 1 1.29 1 9.7.

As surmised, the performance of these two filters is almost identical, with a

large increase in performance over the (11H1 sy,em. Aiy discrepancy between



Stacey's 128-state NRS filter's performance and the 97-state NRS filter's perfor-

mance is attributed to the fact that more time was spent tuning the 97-state NRS

filter than the 128-state filter. Again, the only filter states requiring tuning were

the random bias RRS and GPS states mentioned in the previous section, and these

states have increased dynamics equation noise similar to the 128-state filter. Ap-

pendix E contains the filter performance plots of the main states of interest. Once

again, the 97-State NRS filter provides a navigation solution one order of magnitude

more accurate than the current CIRIS system while using only RRS range and CPS

pseudorange measurements.

5.2.3 The 69-State NRS Filter. This first attempt at a reduced-order filter

shows less optimal results than t he previous two NRS full-order filters. As a reminder,

the 69 error-states implemented in this filter were a combination of 41 INS error-

states, 26 RRS error-states, and the 2 CPS clock error-states. Also, the 97-state truth

and 69-state reduced-order filter models in this analysis were coded and executed in

double precision, so the GPS clock error states' initial covariance values are at their

true magnitude. The filter performance plots are found in Appendix F while Table

5.3 compares this filter with the other NRS filters and CRIS.

Table 5.3. "enjX)ra Average of the Ensemble Average of True Errors for N RS
Filters

il Lti- Longi- Alti- IIEast North IUpt st rh Azi- [
id tude tmide ' VeI WIl WI Tilt Tilt miltl

______ ___ (ft) Jft) fps) (p) (fps) jj(arcs) (arcs) (arcs~)
7IRIS 1.54. 14A 5 0, .1 =....10 0.i 11 I

128-NiRS 1.59 2.35 5.58 0.015 (.011 0.01.5 1.65 112.01 12.8397-NiRS 1.:1r 2.71 . .2, 0.1!4 0.010 04015 1.07r 1.291 9. 74

69-Nis :1.28 .. 21 9.04. 0.031 0.026 }.0701 .37 1.2.11 18.42

As diicus.Ed in Sction 3.6, the p).etudorange mea.iirement noise variance of

this filter is adjusted upward to compensate for the eliminated GPS error-states
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(which are all part of the pseudorange measurement equation). The first best guess

was 225 ft 2 , while the currently implemented value of 300 ft' is still not enough

to ensure adequate performance using conservative filter tuning methods (see the

latitude state in Figure F.2). Even when taking into account the filter's nonoptimal

tuning, it appears the navigation solution from this filter is ihot as accurate as the two

full-order filters. however, when comparing to ('IRIS performance, this filter is at

least 3 times more accurate in position anti velocity estimates. This is a substantial

increase, considering only RRS range and GPS pseudorange equations are used to

update the filters state estimates. It can be deduced from this filter implementation

that the eliminated GPS states, even though they have relatively small magnitudes,

do affect the navigation solution accuracy even when the filter is optimally tuned. It

is with this thought in mind that one is lead into implementing differential corrections

to GPS measurements to achieve higher accuracy in the navigation solution when

implementing reduced-order filters.

5.3 The ENRS Filters

Various NRS filters have been implemented and analyzed with impressive re-

sults compared to CIRIS. The incorporation of differential corrections to GPS pseu-

dorange measurements takes this accuracy a step further with the ENRS. The 89-

State ENRS filter is analyzed first, Using only DGPS psieudorange measurements,

this full-order filter's performance in horizontal position error standard deviation is

on the order of 1 ft. Then a 48-state reduced-order filter is examined. Forty-one

states are eliminated with.only a slirjt decrease, in velocity and attitude error esti-

mation performance. Then two Aters are examined which implement DGPS delta-

range and RRS range-rat- measurements for velocity aiding. Finally, delta-range

and range-rate meas, ements are combined into the 48-state ENRS reduced-order

filter as the conclusion to the work performed in this thesis.
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It is also important to bring out at this time that when an ENRS filter is

actually implemented at CIGTF, the differential corrections should ensure that the

this filter performs almost as well in real life as it does in simulation. Because

the atmospheric, SV clock, and SV position GPS error sources are computed very

accurately at the GPS Reference Station, the post-processing filter can estimate the

true position errors with higher accuracy than can a filter utilizing normal GPS

measurements. The added error sources of real world GPS measurements will likely

decrease the accuracy of the NRS filter somewhat, while having much less affect on

the ENRS filter due to the large reduction in magnitude of the error sources through

differential corrections to the pseudorange measurement.

5.3.1 The 89-State NRS Filter (Position Measurements Only). This filter is

very similar to the 97-state NRS filter, except for the assumption that differential

corrections have been applied to the raw pseudorange measurements before filter

processing. It includes the 41-state INS model and the 26-state RRS model with

the GPS clock states' initial covariances decreased so the filter executes accurately

in single precision mode. As shown by Table 5.4, the inclusion of differential correc-

tions improves filter performance by almost 50 percent in position error estimation

accuracy over the 97-state NRS filter.

Table 5.4. Temporal Average of the Ensemble Average of True Errors for NRS and
89-State ENRS Filters

Filter Lai- Longi- Alti- East North Up Et North Azi-
Ii rude tude tude Vel VCd Vel Tilt Tilt muth I

_i__
t ) I (ft) t (ft) (fps) (fps) fps arcs) (arcs)] (arcs)

CIRIS ff14.00 I 14.00 140.00 11 0.100 J 0.100 0.400if ..... I I I1
128-N RS 1.59 2.35 5.58 0.015 0.011 0.045 1.65 2.02 1 12.83
97-NRS 1.35 2.71 5.28 0.014 0.010 0.045 1.07 1.29 9.74
69-NRS 3.28 4.21 9.04 0.033 0.026 0.070 1.37 2.11 18.42

89-ENRS 0.84' 1.04 3.80 0.013 0.010 0.042 0.94 1.29 6.46
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The filter performance plots are located in Appendix G, and the reader will

note how well the filter is tuned. The only unusual behavior in any of the plots

stems from the fact that the GPS clock bias state approaches the limit of accuracy

of single precision near the end of the run and both GPS clock states diverge slightly

due to this fact. Other than this small anomaly, this filter performs better than any

filter examined so far.

5.3.2 The 48-State ENRS Filter (Position Measurements Only). Sincethe

full-order ENRS filter performs so well, it is now time to analyze the reduced-order

filter designed to fulfill the "less than 70 state" requirement as stated in Section

1.2. To remind the reader, 48 states were chosen over the 69 states of the NRS

filter because the addition of DGPS delta-range and RRS range-rate measurements

increases the time required to update the states in the EKF by 50 percent, causing the

Monte Carlo analysis to take almost .50 percent longer. Because of this time increase,

21 additional INS states relating to velocity and attitude errors were eliminated

along with the 20 upper DGPS error states as discussed in Section 4.4. Table 5.5

once again compares the performance of this 48-state reduced-order ENRS filter to

all previous filters and CIRIS. As can be seen, the position states suffer almost no

degradation due to the order reduction, while the velocity and attitude states degrade'

significantly from the eliminated INS states. However, the addition of velocity aiding

measurements should increase the velocity states' accuracy and approach the full-

order filters' performance.

Appendix H contains-the 10-run Monte Carlo analysis plots for the 2-hour

fighter flight profile. Once again, using the techniques of Section 2.4, this' filter has

been conservatively tuned for optimum performance. As mentioned in Section 4.4,

the variance of the pseudorange measurement equation noise v(tj) was increased

from its full-order value of 9ft2 to 30ft2 to compensate for' the eliminated DGPS

states. Also, a dynamics equation noise of 10 - ra&/see is added to the first two

INS states to compensate for the 21 eliminated states.' It is of interest to note
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Table 5.5. Temporal Average of the Ensemble Average of True Errors for NRS,
89-State ENRS, and 48-State ENRS Filters

Filter Lati- Longi-, Alti- East North Up j, East North Azi-
1r tude tude tude Vel Vel I Vel Tilt j Tilt muth

II (ft) (ft) (ft) (fps) (fps) (fps) (arcs) j(arcs) (arcs)

CIRIS H 14.00 1 14.00 40.00 J1 0.100 1 0.100 10.400 11 _ 1 1_

128-NRS 1.59 2.35 5.58 0.015 0.011 0.045 1.65 2.02 12.83
97-NRS 1.35 2.71 5.28 0.014 0.010 0.045 1.07 1.29 9.74
69-NRS 3.28 4.21 9,04 !0.033 0.026 0.070 1.37 2.11 18.42

89-ENRS 0.84 1.04 3.80 I 0.013 0.010 0.042 0.94 1.29 6.46
48-ENRS-P 0.90 1 1.32 3.05 ,i 0.027 1 0.020 10.044 1 3.83 4.09 19.23 j

that the 21 eliminated INS states actually feed into the velocity and attitude error

states, but these states need no increase in noise, while the position-related states

do need noise added for acceptable tuning. Once again, this 48-state reduced-order

ENRS filter with DGPS pseudorange and RRS range measurements increases the

navigation solution accuracy in position by better than one order of magnitude

compared to CIRIS. Now the velocity aiding filters are explored to analyze how

velocity measurements can increase INS velocity error-state estimation accuracy.

5.4 Velocity-Aiding Filters

The filters analyzed in this section implement velocity-aiding measurements

into the DGPS and RRS subsystems. By implementing the DGPS delta-range and

RRS range-rate equations separately in this way, each measurement' is separately

tuned for optimal performance before they are merged together into the final 48-

state ENRS filter. Also, separating the' DGPS and RRS error models allows faster

execution of-the simulations so that more tuning runs can be performed in a shorter

period of time. All of these simulations operate in double precision mode using a

10-run Monte Carlo analysis.
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5.4.1 The 22-State DGPS Filter. This section analyzes the results of the 22-

state DGPS filter used for DGPS delta-range measurement equation implementation.

Table 5.6 contains three entries for the 22-state DGPS filter. The first entry "22-

DGPS-P" displays the average errors for the 22-state filter using only pseudorange.

measurements during a 10-run Monte Carlo fighter flight profile analysis. No plots

are included in the appendixes for this filter; it is evaluated simply to establish a

baseline to show what the true navigation solution errors are without delta-range

measurements. The second entry 'for this filter, "22-DGPS-1", is a 10-run Monte

Carlo fighter profile analysis incorporating DGPS delta-range measurements. The

third entry, "22-DGPS-2" utilizes a straight flight profile in its 10-run analysis.

Table 5.6. Temporal Average of the Ensemble Average of True Errors for Previous
and 22-State DGPS (Velocity Aiding) Filters

Filter Lati- Longi- Alti- East North Up East North Azi-
tude tude tude Vel Vel Vel Tilt Tilt muth

I_ .(ft) (ft) (ft) Il (fps) (fps) (fps) (arcs) (arcs) (arcs)

CIRIS 14.00 14.00 1000OI 0.100 1 0.100 10.400 II I 1

J28-NRS 1.59 2.35 5.58 0.015 '0.011 0.045 1.65 2.02 12.83
97-NRS 1.35 2.71 5.28 0.014 0.010 0.045 1.07 1.29 9.74
69-NRS 3.28 4.21 9.04 0.033 0.026 0.070 1.37 2.11 18.42

89-ENRS 0.84 1.04 3.80 0.013 0.010 0.042 0.94 1.29 6.46
48-ENRS-P 0.90 1.32 3.05 0.027 0.020 0.044 3.83 4.09 19.23
22-DGFS-P 1.95 1.84 3.14 0.037 0.044 0.052 5.28 3.94 29.85
22-DGPS-1 2.10 1.96 3.25 0.043 0.051 0.063 5.46 4.33 45.02
22-DGPS-2 2.20 2.14, 3.33 0.044 0.049 0.060 5.56 4.09 63.24

The filter performance plots for the delta-range DGPS filters are located in

Appendix I (22-DGPS-1 and -2). As seen from the plots and the values in Table 5.6,

the DGPS delta-range measurement. is corrupting the position and velocity error-

state estimation in these filters a small amount (remember position errors are part

of the delta-range measurement). This degradation in filter performance is likely to

be caused by cross-correlations of the position and velocity measurements which are
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not modeled in this thesis, and it is currently being investigated to solve this problem.

However, even with this anomaly, this reduced-order filter performs as well or better

than the 69-state reduced-order NRS filter (a reduced-order DGPS only filter versus

a reduced-order GPS/RRS filter issue). Assuming the anomaly with the DGPS

delta-range measurement equation is remedied, this 22-state DGPS filter is expected

to produce position and velocity error estimates 50 percent more accurate than the

69-state NRS filter and on par with the other full-order filters discussed previously.

The DGPS delta-range measurement is implemented exactly as discussed in Section

4.5.1, with no changes required in state dynamics noise or measurement noise from

the truth model values. This is not unusual since no measurement states have been

eliminated, essentially a "full-order" measurement equation. Since the DGPS delta-

range and RRS range-rate measurements are very similar, it is no surprise if the

46-state CIRIS filter analyzed in the next section suffers from the same anomaly as

the 22-state DGPS filter.

5.4.2 The 46-State CIRIS Filter. Again, this filter is implemented to evaluate

RRS range-rate measurements optimally before they are incorporated with DGPS

delta-range measurements in the 48-state ENRS filter.i Table 5.7 contains values

for three CIRIS filters similar to the DGPS filters discussed in 'the previous section.

The first filter, "46-CIRIS-P", is a 46.state filter inccrporating only RRS range

measurements. It is used as a baseline to evaluate the performance of the range-rate

measurement equations. No plots are contained in apper dices for this 10-run Monte

Carlo fighter profile analysis since filters utilizing only RRS range measurements

have been thoroughly covered in previous thesis, (20, 19, 22). The results of the

second CIRIS filter, "46-CIRIS-1", are derived from a 0-run Monte Carlo fighter

profile analysis using RRS range and range-rate meas rements. The third filter,

"46-CIRIS-2", was analyzed with 10-run analysis using racetrack flight profile and

also incorporates RRS range and range-rate measurements.
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Table 5.7. Temporal Average of the Ensemble Average of True Errors for Previous
and 46-State CIRIS (Velocity Aiding) Filters

Filter Lati- Longi Alti- East North U East North Azi-

tude tude jtude Vel Vel V el Tilt Tilt muth j
_______(ft) (ft) (ft) JJ(fps) (fps) (fps) jJ(arcs) (arcs) (arcs)

CIRIS I 14.00[ 14.00 40.00 0.100 [ 0.100 [0.400 ]_ _ I __

128-NRS .59 2.35 5.58 0.015 0.011 0.045 1.65 2.02 12.83
97-NRS 1.35 2.71 5.28 0.014 0.010 0.045 1.07 1.29 9.74
69-NRS 3.28 4.21 9.04 0.033 0.026 0.070 1.37 2.11 18.42

89-ENRS 0.84 1.04 3.80 0.013 0.010 0.042 0.94 1.29 6.46
48-ENRS-P 0.90 1.32 3.05 0.027 0.020 0.044 3.83 4.09 19.23
22-DGPS-P 1.95 1.84 3.14 0.037 0.044 0.052 5.28. 3.94 29.85
22-DGPS-1 2.10 1.96 3.25 0.043 0.051 0.063 5.46 4.33 45.02
22-DGPS-2 2.20 2.14 3.33 0.044 0.,049 0.060 5.56 4.09 63.24
46-CIRIS-P 3.12 6.84 18.09 0.046 0.026 0.100 4.01 4.39, 47.48
46-CIRIS-1 2.80 6.40 11.87 0.042 0.024 0.046 4.01 4.34 45.53
46-CIRIS-2 3.91 6.20 8.94 0.039 0.026 0.044 4.08 4.13 12.92

Appendix J contains the filter performance plots for the filters utilizing range

and range-rate measurements (46-CIRIS-1 and -2). In this filter, the range-rate

measurements are not corrupting the position states, but they do not improve the

velocity states' estimation except possibly in the vertical channel. In this filter, the

velocity measurement anomaly does not have a pronounced effect as in 'the DGPS

filter, possibly because the transponders are stationary and the GPS satellites circle

the earth. Iii any case, this anomaly still hinders the'evaluation of how much velocity

aiding will enhance the navigation solution. The RRS 'range-rate measurement is'

implemented exactly as discussed in Section 4.6.1, with no changes required in state'

dynamics noise or measurement noise from the truth model values. Again, this is not

unusual since no measurements states have been eliminated, essentially producing a

"full-order" measurement equation. For completeness and in the hopes the anomaly

is eventually corrected, both DGPS dlta-range and RRS range-rate measurement

equations are merged into the 48-state' ENRS filter in the next section.
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5.5 The Complete 48-State ENRS Filter

Because thevelocity aiding measurements do not cause the DGPS or CIRIS

filters to diverge or become unstable, a decision is made to proceed with incorporating

DGPS delta-range and RRS range-rate measurements into the 48-state ENRS filter.

This way, when the anomaly is discovered, the Fortran code can be quickly fixed

and filter analysis preformed. Table 5.8 contains the true errors for the navigation

solution for all filters discussed and implemented in this thesis. Notice that even with

velocity measurement corruption, the 48-state ENRS filter performs much better

than CIRIS or even the 69-state NRS filter. In fact, its position error-state estimation

is one of the best, even with the anomaly present.

Table 5.8. Temporal Average of the Ensemble Average of True Errors for All Filters

Filter Lati- Longi- Alti- East North Up I East North Azi-
jjtude. tude tude JjVel Vel Vel Tilt Tilt M~uth

_______ J(ft) j(ft) (ft) JJ(fps) (fps) (fps) (arcs) (arcs) (arcs) J
CIRIS i14.00 14.00' 40.00 0.100 0.100 10.400 11 I 4 __

128-NRS 1.59 2.35 5.58 0.015 0.011 0.045 1.65 2.02' 12.83
97-NRS 1.35 2.71 5.28 0.014 0.010 0.045 1.07 1.29 9.74
69-NRS 3.28 4.21 9.04 0.033 0.026 0.070 1.37 2.11 1.8.42

89-ENRS 0.84 1.04 3.80 0.'013 0.010 0.042 0.94 1.29 6.46
48-ENRS-P 0.90 1.32 3.05 0.027 0.020 0.044 3.83 4.09 19.23
22-DGPS-P 1.95 1.84 3.14 0.037 0.044 0.052 5.28 3.94 29.85
22-DGPS-1 2.10 1.96 3.25 0.043 0.051 0.063 5.46 .4.33 45.02
22-DGPS-2 2.20 2.14 3.33 0.044 0.049 0.060 5.56 4.09 63.24
46-CIRI3-P 3.12 6.84 18.09 0.046 0.026 0.100 4.01 4,39 47.48
46-CIRIS-1 2.80 6.40 11.87 0.042 0.024 0.046 4.01 4.34 45.53
46-CIRIS-2 3.91 6.20 8.94 0.039 0.026 0.044 4.08 4.13 12.92
48-ENRS 1.19 1 1.80 5.46 0.040 0.029 0.087 5.14 4'92 31.21

Plots of this filter's state estimation performance can be found in Appendix

K. These plots represent a 25-run Monte-Carlo analysis of the fighter flight profile.

No changes were made to the dynamics equation or measurement noises other than

those discussed in previous sections. It appears that when the velocity measurement
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equations anomaly is remedied, this 48-state ENRS filter will produce navigation

solutions one order of magnitude more accurate than current CIRIS system, and

will rival any of the full-order filters implemented or analyzed in this thesis.

5.6 Filter Tuning Parameters

This section contains tables of the filter tuning parameter's (Q(t) and R(ti))

final values for the filters implemented in this thesis when the values were dif-

ferent from the truth model values. Table 5.9 lists the Q(t) values from among

the first 20 INS error-states. The listed states were the only states requiring tuning

when a 20-state INS filter model was implemented, and the tuning values were the

same for all the filters. For a'definition of the listed states, consult Table A.7 in

Appendix A.

Table 5.9. INS States Tuning Parameters Q(t)

I State j State Truth Model Filter
Number Symbol Value Value

I1 b, 0.0 TO- 1 6 rad2/sec

2 6oy 0.0 lO 16 radP/seC
j[ 12 bS3 0.0 110"8 ft 2 /sec 3

1 I 6S 4  i 0.0 10-ft2 /sec

14 Vf 0.0 10'rad2 /sec

15 o0.0 -!8 ra&/ sec
16 1 VZe 1. 0.0 l0-'8rad2 /sec j

17 bg, 0.0 l -12ug1l7/sec

19 6g 0.0 10-12ug2/seC

Table 5.10 lists the 26 RRS error-state's t'.ITn. parameters. All of the RRS

error-states required tuning and are listed. Remm. iiber that there are range and

velocity bias states along with four errc, ;tates (3 position errors and 1 atmospheric

error) for each of six transponders in the truth and filter models throughout this
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thesis. Table A.5 in Appendix A contains the definition for each of the states now

listed.

Table 5.10. RRS States Tuning Parameters Q(t)

State State Truth Model Filter
Number Symbol Value Value

1 , R6  0.0 10-5ft 2/sec

2 j bvb 1 0.0 10-Sft2 /sec 3  ii
3, 7,11,15,19,23 6PTi. 0.0 2. 0-3 ft2 Isec

4, 8,12,16,20,24 bPT: 0.0 2. 10-3 ft 2/sec
5, 9,13,17,21,25 6PT, 0.0 2- 10-3ft 2/sec
6,10,14,18,22,26 bRTi. 6.66. 10-' 3ft 2/sec 6.66. lO-ft2/sec

Table 5.11 lists the 30 GPS error-state's tuning parameters. Most of the GPS

error-states required tuning, so they are all listed. Listed are receiver clock bias

and drift error-states along with seven error-states (1 code-loop, 2 atmosphere, 1

SV clock,and 3 position errors) for each of 4 SVs in the full-order filter models

throughout this thesis. The relaced-order GPS filters only include the two clock

error-states but are still tuned with the values shown below for these two states.

Table A.6 in Appendix A contains the definition for each of the states now listed.

Table 5.12 lists the 22 DGPS error-state's tuning parameters. All of the'DGPS

error-states required tuning, so they are. all listed. Listed are receiver clock bias and

drift error-states along with five error-states (2 atmosphere and 3 position errors)

for each of 4 SVs in the full-order filter models throughout this thesis. The reduced-

order DGPS filters only include the two clock error-states but are still tuned with

the values shown below for these two states. Table A.9 in Appendix A contains the

definition for each of the states now listed.
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Table 5.11. GPS States Tuning Parameters Q(t)

State State Truth Model Filter
Number Symbol Value Value

1 6 Rdk. 0.0 10- 2ft2/sec
2 6Dk. 0.0 10-6 ft 2 /sec

3,10,17,24 6Roop, 0.5ft 2/sec 0.5ft2/sec
4,11,18,25 6Rtopi 4. lO3 ft 2/sec 4 -03 ft 2 /sec
5,12,19,26 4. lO 3 ft 2 /sec 41. 10- ft2]sec
6,13,20,27 bRlk,,, 0.0 10-8ft 2/sec
7,14,21,28 6x., 0.0 -0ft 2 /sec
8,15,22,29 6y-, 0.0 0 2ft 2/sec
9,16,23,30 z8,,, . 0.0 10-.2 ft 2 /seC

Table 5.12. DGPS States Tuning Parameters Q(t)

f[State - State 1Truth Model 1 Filter
Numb r Symbol Value Value

1 -6Ruclk. 0.0 10- 2ft 2/sec
2 6 uc.!k 0.0 10-6 ft 2 /sec

3' 8,13, 8 6Rt7 S, 1. 1O3 ft 2 /sec 5.!O-4 ft./sec

4, 9,14, 9 6R~,,, 4. lO- 4 ft 2 /sec 15. lO04 ft2/sec
5,10,15, I0 6x,,, 0.0 1. l- 4ft 2 /sec

6,11,16,1 6y,,, 0.0 1. lO 4ft 2/sec

7,12,17,,2 bz,,, 0.0 1 . 10-4ft 2/sec
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The last table in this section lists the final R(ti). value for the GPS/DGPS

pseudorange measurement for the reduced-order filters implemented in this thesis.

The full-order GPS/DGPS filters measurement noise variance is always 9 ft 2 . The

RRS range measurement noise variance is always 4 ft ' . Only the 69-state NRS,

48-state ENRS, an , 22-state DGPS reduced-order filters need adjustment of their

pseudorange measurement noise variance, so only values for these filters are listed.

Table 5.13. GPS/DGPS Measurement Noise Variance Tuning Parameters R(t)

Filter Truth Model Filter

L Value ValueJ
69-State NRS 9ft2  300ft2

48-State ENRS 9ft 2  30ft2

22-State DGPS 9ft 2  30ft 2

5.7' Summary

This chapter discusses the results of all the filters designed, implemented, and

analyzed in this thesis. As expected, the full-order filters perform better than the

reduced order filters, while the filters utilizing UjGPS measurements outperform 'fil-

ters with, only GPS measurements. Again as a reminder, the truth, model for the

INS is 41 states (except for Stacey's 72-state model), the,RRS truth model is 26

states, the GPS truth model 30 states, and the DGPS-truth model is 22 states. The

anomaly in the velocity-aiding measurement equations hindered the analysis of the

filters implementing this type of measurement. However, every filter in this tihe-

sis significantly outperforms CIRIS and shows the benefit'of augmenting the RRS

transponder measuelnents with GPS and DGPS measurements.
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VI. Conclusions and Peco -iamendations

6.1 Conclusions

6.1.1 Thc NRS Filters. All three NRS filters performed well and greatly

increased the accuracy of the navigation solution over CIRIS a,- it is implemented

today. The following sections contain specific conclusions drawn from the INRS

filters' performance while recommendations derived from their implementation are

found later in this chapter.

6.1.1.1 41-State INS Model. The 41-state INS'error model proves to

be an adequate substitute for the 93-state LN-93 INS error model in both the truth

and filters models were it was utilized. As shown in Appendix C, the 41-state error

model followed the 93-state error model to within one percent over the entire fighter

flight trajectory with respect to position, velocity, and attitude errors. The reader

must recognize that the eliminated states from the 93-state model feed into the first

ten states in the INS error model, so the remaining INS states (states 11 through 41

in Tables A.7 and A.8 in Appendix A) do not vary from the 93-state error model and

plots from these states are not included in Appendix C. This reduction in states in

both truth and filter models greatly decreased the time required for filter performaice

analysis.

6.1.1.2 Single versus Double Precision. As stated in Section 5.1.1, dou-

ble precision is necessary to faithfully model GPS/DGPS measurements in VAX For-

tran. Recognizing that every computer system implements precision differently, the

reader is warned that 12-bit accuracy is the minimuta accuracy required for a 2-hour

simulation with receiver clock errors modeled as in this thesis. However, also recog-

nize that the single precision assumption used in the full-order filters implemented

in this thesis only affects the initial filter acquisition (estimation) of the receiver
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clock errors, and the size of these two clock errors makes the decreased magnitude

assumption a viable alternative to double precision simulation analysis.

6.1.1.3 NRS Filter Performance. As rtated in Chapter V, the full-order

128- and 97-state NRS filters perform so much alike that any discrepancy in perfor-

mance shown in the tables is a tuning issue and noL a performance issue. However,

the 69-state NRS filter performance degrades significantly when compared to the two

full-order filters mentioited above. Even though the 69-state filter in not optimally

tuned, it is a safe assumption that its position and velocity error estimation accuracy

will be worse than the full-order filters. Recognize, though, that the 69-state filter is

at least 3 times more accurate than the current CIRIS system. This increase in per-

formance can be attributed to the incorporation of GPS pseudorange measurements

to augment transponder aiding and more filter states used for the analysis (69 in the

NRS versus 11 in CIRIS). How much each of these attributes individually increases

performAnce is not in the scope of this thesis; however, an educated guess would be

that increased filter states give the most increase in performance in evaluating the

69-state NRS filter's performance increase over CIRIS.

6.1.2 The ENRS Filters. Like the NRS filters, the ENRS filters all show

a great increase in performance over CIRIS. The full-order 89-state ENIS filter

outperforms any other filter implemented in this thesis by producing a navigation

solution one order of magnitude more accurate than CIRIS. The 48-state reduced-

order filter is also very accurate, and produces position error estimates one order

of magnitude better than CIRIS along with velocity error estimates 5 times better

(using only DGPS pseudorange and RRS range measurements). As stated in Chapter

V, the 48-state ENRS filter using position- and velocity-aiding measurements has

not been adequately modeled and the corruption of the navigation solution by an

anomaly eliminates any meaningful conclusions which can be drawn form this filter.
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However, the following section contains a conclusion which can be drawn from the

ENRS filters successfully implemented in this thesis.

6.1.2.1 Utility of DGPS. The one main conclusion which can. be drawn

from the work performed in this thesis, and one which cannot be emphasized enough,

is that incorporation of DGPS pseudorange measurements greatlyincreases

the navigation solution accuracy of CIRIS. When either the 89-state full-order.

filter or the 48-state reduced-order filter is analyzed, it is readily apparent that DGPS

provides the increase in navigation solution accuracy required for CIRIS to be used

as a test reference against the GPS-aided INSs CIGTF is likely-to be testing in the

next decade. This one conclusion is the culmination of the work performed in this

thesis and the 3 other theses which preceded it (20, 19, 22).

6.2 Recommendations

There are many recommendations which could be derived from the work per-

formed in this thesis. The following sections contain a few of the most important as

determined by the author and the thesis committee.

6.2.1 Velocity-Aiding Measurements Require Further Study. When velocity-

aiding measurements (DGPS delta-range and RRS range-rate) were implemented

into the 48-state ENRS filter, corruption of both position and velocity error-state

estimation precluded performance analysis of the filter. At first, an error in the

algorithm implementation was suspected; however, careful analysis proves this not to

be the case. Then, the coordinate transformation from the navigation frame (NWU)

to Litton ECEF became suspect. When a different transformation was implemented

(results not shown in this thesis), the corruption of position and velocity states

continued. Finally, during the thesis defense, the correlation between position and

velocity measurements in the DGPS subsystem as it is rriodeled in this thesis (and

is performed by the ABR in real life) was brought to the surface. Since there is' a
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definite correlation between position and velocity measurements in the truth and filter

models of this thesis, it is necessary to model them as being correlated. This requires

further analysis on the part of CIGTF to determine to true correlation values so

they can be implemented accurately in the EKF. 1 he measurement noise covariance

matrix R(t,) is modified to include off-diagonal terms describing the correlation

between the position and velocity measurements. Note that when utilizing MSOFE

as the EKF evaluation tool, scaler measurements are assumed (R(t) is a diagonal

matrix) so that for correlated measurements (off-diagonal terms), this matrix must

be diagonalized before implementation. Unfortunately, Maybeck has stated this lack

of correlation between measurements used in this thesis still does not account for the

corruption of the navigation solution, since the truth model implements uncorrelated

measurements as well (13). This anomaly, which has plagued the three previous

theses also (20, 19, 22), remains undefined and a subject for further research.

6.2.2 Return to a 93-State INS Truth Model. The NRS and ENRS truth and

filter models developed or analyzed in this thesis assume that either a 72-state INS

model (Stacey's NRS) or 41-state INS model (all other models in this thesis) perform

close enough to the true 93-state LN-93 error model, so that aniy real difference can

be ignored. However, before real measurements are used to test any of the filters,

the 93-state INS model should be included in the truth model and filter performance

against a full-order truth model analyzed in case further tuning is required.

6.2.3 Use of Real Measurements. Once the velocity-aiding measurements'

anomaly has been identified and corrected and the filter analyzed against the true

93-state INS model, actual DGPS and RRS measurements should be used to test the

48-state ENRS filter for robustness. It is a foregone conclusion that the filter will need

further tuning for optimal performance, and this tuning can only be accomplished

using real measurements.
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6.2.4 Reduction of the RRS error-states in the Filter. Another worthwhile

effort could be the reduction of the 26-state RRS model in the filter to a 2-state

model. The RRS, range and velocity bias states would be retained (see Table A.5

in Appendix A) with increased variance of the RRS range measurement noise to

compensate for the eliminated states. Recognize this reduction does not affect the

RRS range-rate measurement since the eliminated states don't appear in this mea-

surement. Also, since DGPS measurements alone provide an accurate navigation

solution, only a minimal degradation of the navigation solution should be realized.

Preliminary work using this technique has begun utilizing only position-aiding mea-

surements (not included in this thesis), and the results look very encouraging. Note

that reduction of the RRS states from 26 to 2 reduces the 48-state ENRS filter to

24 states. This allows for inclusion of the 21 previously eliminated INS states (see

Table A.8 in Appendix A) definitely increasing the filter's ability to estimate atti-

tude and velocity error-states while staying under the 70-state post-processing filter

limit. This newly proposed filter would in theory have 41 INS error-states, 2 RRS

error-states, and 2 DGPS error-states for a total of 45 error-states to be compared

to the 89-state ENRS truth model developed in Chapter IV.
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Appendix A. Error Model State Definitions

This appendix contains a tabular listing of the 93 Litton INS, 26 RRS, 30 GPS,

41 reduced INS truth model, and the 22 DGPS error-states.

A.1 Litton LN-93 Error-States

Tables A.1 through ,A.4 list the LN-93 erro model (93 states) as defined in

the Litton CDRL (11). Note that this document cortains several errors, which have

been corrected in these tables (22).

A.2 RRS Transponder Error States

Table A.5 lists the RRS transponder error states as they are modeled in the

NRS. These states are defined in and extracted from (19). A total of 26 states are in-

cluded to model the error characteristics of six ground Lransponders plus interrogator

error sources (22).

A.3 GPS Error States,

Table A.6 lists the GPS error states as they are modeled in the NRS. These

states are defined in and extracted from (6). The definitions are believed to be

ultimately traceable to the paper by D.B. Cox (4). A total of 30 states are included to

model the error characteristics of 4 space vehicles plus user equipment error sources.

(22)

A. 4 Reduced Order INS T-'uth Model States

Tables A.7 and A.8 list the 41 INS states used in all the full-order models in

this thesis except for Stacey's 128-state model. These states are based on the the

recommendations of Lewantowicz and Keen (10).
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A.5 DGPS Error States

Table A.9 lists the DGPS error states as they are modeled in the ENRS. A

total of .22 states are included to model the error characteristics of 4 space vehicles

plus user equipment error sources.
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Table A.1. INS System Model: INS States 1 -4 29

SState State 1Definition
Number SS Sybol ________________________

1 bO, X-component of vector angle from true to computer frame
2 boy, Y-component of vector angle from true to computer frame
3 bO Z-componcnt of vector angle from true to computer frame
4 4~X-component of. vector angle from true to platform frame
5 Oy Y-component of vector angle from true to platform~frtme
6 Z-compoiient of vector angle from true to platform frame
7 614 X-component of error in computed velocity
8 b Vy Y-component ef error in computed velocity
9 b6V. Z-component of error in computed velocity
10 6h Error'in vehicle altitude above reference ellipsoid
11 bhL. Error in lagged inertial altitude
12 bS 3  Error in vertical channel aiding state
13 bS4  Error in vertical channel ai'ding state

14 b., X-component of gyro correlated drift 'rate
15 buc Y-component of gyro correlated drift rate
16 b, Z-comnonent of gyro correlated drift rate
17 VxC X-component of accelerometer and

_______ _____ velocity quantizer correlated noise

18 VY Y- component of accelerometer and
_______ ______velocity quantizer correlated noise

19 V1 C Z-component of accelerometer and
________velocity quantizer correlated noise

20 ebg. X-component of gravity vector errors
21 bg,, Y-component of gravity vector errors
22 bs Z-component of gravity vector errors
23 61hB Total baro-altimeter correlated error
24 bre X-cdmponent of gyro trend
25- by Y-component of gyro trend
26 b~g, 7,coniponent of gyro trend
27 V~, X-component of accelerometer trend
28 V y, Y-component of accelerometer trend
29 V,, Z-component of accelerometer trend
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Table A.2. INS System Model: INS, States 30 -*47

State State Definition

Number ymbol_________________

30 b2  X-component of gyro drift rate repeatability
31 by, Y-comporent of gyro drift rate repeatability
32 b,. Z-component of gyro drift rate repeatability
33 _____ X-component of gyro scale factor error
34 S9 , Y-cornponent of gyro scale factor error
I5 _____ Z-component of gyro scale factor error
36 Xi X gyro misalignment about Y-axis
37 X2 Y gyro misalignment about X-axis
38 X3 Z gyro misalignment about X-axis
39 vi X gyro misalignment about Z-axis
40 P2  IY gyro misalignment about Z-axis
4,1 P'3  JZ gyro misalignment about Y-axis,-.

42 J0 X gyro scale factor nonlieit
43 D,,, 'Ygro scale factor ncin-linearity
44 Zgyro scale fcor non-linearity
45 5Q1,, X gyre scale factor asymnmetry error
46 S~b Y gyro scale factor asymmetry error
47 SQ&, Z gyro gcaie factor asymmetry error__ _
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Table A.3. INS System Model: NS States 48 -- 69

State State Definition
Number Symbol

0 I V6. X-cormponent of accelerometer bias repeatability
49 V b Y-component of accelerometer bias repeatability
50 Vb. Z-component of accelerometer bias repeatability
51 SA. X-component of accelerometer and velocity

quantizer scale factor error
52 SA, Y-component of accelerometer and velocity

quantizer scale factor error
53 SA, Z-coinponent of accelerometer and velocity

quantizer scale factor error
54 SQA, X-component of accelerometer and velocity

quantizer scale factor asymmetry
55 SQA, Y-component of accelerometer and velocity

quantizer scale factor asymmetry
56 SQA .  Z-component of accelerometer and velocity

quantizer scale factor asymmetry.
57 fx Coefficient of error proportional to square

of measured acceleration
58 f Coefficient of error oroportional to square

of measured accelerdtion
59 f, Coefficient of error proportional to square

of measured acceleration
60 fr Coefficicnt of error proportional to products of acceleratior.

along and orthogonal to accelerometer sensitive axis
61 f- Coefficient of error proportic-ial to products of acceleration

along and orthogonal to accelerometer sensitive axis
62 ' f~, Coefficient of error proportional to products of acceleration

along and orthogonal to accelerometer sensitive axis
63 fil Coefficient of error proportional to' products of acceleration

_ _along and' orthogonal to accelerometer sensitive axis
64' f Coefficient of error proportional to pioducts of acceleration

along and o:.hogona, to accelerometcr snsitive axin
65 h1v Coefficient of error proportional to products of acceleration

along and orthogonal to acceherometer sensitive axis
66 P1 X accelerometer misalignment about, Z-axis
67 P2 Y accelerometer misalignment about Z-axis
68 pA3 Z accelerometer misalignmnt about Y-axis
69 73- Z-accelerometer rnisaligntirert about X-axis
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Table A.4. INS System Model: INS States 70 -- 93

SState tte Definition

Number Symbol_
7t Vq X-component of accelerometer bias

thermal transient
71 Vq Y-component of accelerometer bias

thermal transient
72 VZT Z-component of acce!erometer bias

thermal transient
73 b, X-component of initial gyro drift rate

I bias thermal transient
74 bv, Y-component of initial gyro drift rate

I bias'thermal transient
75 bq Z-corrponent of initial gyro drift ral,

bias thermal transient

76 Fv, X gyro compliance term
77 Fzy X gyro compliance term
78 J X gyro compliance term
79 F v  X gyro compliance term
80 F' 3  X gyro compliance term
81 F,,. X gyro compliance term
82 Fyzx Y gyro compliance term
83 Fv,, Y gyro compliance term
84 FY,, Y gyro compliance term
85 7'T Y gyro compliance term
86 .F.z Y gyro compliance term
87 Fvxv Y gyro compliance term
88 F~zv  Z gyro compliance term
89 jF,, Z gyro compliance term
90 F.,. Z gyro 'compliance term

* 91 b', Z gyro compliance term
_92 Fy, Z gyro compliance term
93 F,,_, Z gyro compliance term
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Table A.5. RRS Error States

State State Definition
Number Symbol [NOTE: SINS = Total INS States]

SINS + 1 6Rb Range error due to equipment bias

SINS + 2 bvb Velocity error' due to equipment bias

SINS + 3 PTZ Transponder I x-component of position error
SINS + 4 bPTI Transponder 1 y-component of position error

SINS + 5 bPT1. Transponder 1 z-component of position error
SINS + 6 bRTI. Transponder 1 range error due to atm propagation
SINS + 7 6 PT2, Transponder 2 x-component of position error
SINS + 8 bPT2. Transponder 2 y-component of position error

SINS + 9 6 PT2. Transponder 2 z-component of position error

SINS + 10 bRT2. Transpoaider 2 range error due to atm propagatiou

SINS + 11 bPT3. Transponder 3 x-component of position error
SINS + 12 bPT3. Transponder 3 y-component of position error

SINS + 13 6 P3, Transponder 3 z-component of position error
SINS + 14 6RT3. Transponder 3 range error due to atm propagation

SINS + 15 6 PT4. Transponder 4 x-component of position error
S NS + 16 6 Pm4. Transponder 4 y-component of position error
SINS + 17 6 PT4, Transpon ler 4 z-component of position error
SINS -d 18, 6 RT4. - Transponler 4 range error due to atm propagation

SINS + 19 bPTs, "Iranspon der 5 x-cornponent of position error

SINS + 20 bPTs ,  Transpon ter 5 y-component of pos;tion error
SINS + 21 6 PTS, Transpon ter 5 z-component of position error

SINS + 22 .hMTS. Transponler 5 range error due to atm propagation
SINS + 23 6 PT6, Transpon ler 6 x-component of position error
SINS + 24 b Pr", Transponjier 6 y-component of position error
Sitis + 25 b5PTs, Transponjler 6 z-component of position error

SINS + 26 6RTA. Transponter 6 range error due to atm propagation
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Table A.6. GPS Error States[J State State Definition
Number Symbol j[NOTE: SRRS = Total RRS States] J

SINS + SRRS + 1 6Rj~lk User clock bias
SINS + SRRS + 2 6D,11k. User clock drift
SINS + SRRS + 3 SR I.,0 p, SV 1 code loop error
SINS + SRRS + 4 6R&7op1  SV 1 tropospheric error
SINS + SRRS + 5 6R,,, SV 1 ionospheric error
SINS + SRRS + 6 6 1 ,. SV 1 clock error
SINS + SjqRS + 7 6x,,,, SV 1 x-component of position error
SINS + SRRS + 8 by~v SV 1 y-component of position error
SINS + SRRS + 9 6Z8V SV 1 zycomponent of position error
SINS + SRRS + 10 Mb,, SV 2 code ioop error
SINS + SRRS + 11 6Rt,70 p, SV 2 tropospheric error
SINS + SRRS + 12 6R 0 2  SV 2 ionospheric error
SINS + SRRS + 13 bR~lk. SV 2 clock error
SINS + SRRs + 14 6 x.,, SV 2 x-component of position'error
SINS + SRRS + 15 by,,. SV 2 y-component of position error
SINS + SRRS + 16 bz~v SV 2 z-component of position error

SINS + SRRS + 17 R 10 3 SV 3 code loop error
SINS + SRRS + 18 6Rt7, 3  SV 3 tropospheric error
SINS + SRRS + 19 bR10 "3  SV 3 ionospheric error
SINS + SRRS + 20 R~k SV 3 clock error
SINS + SRRs + 21 6xSV3  SV 3 x-component of position error
SINS + SRRS + 22 by, SV 3 y-compgnent of position error
SINS + SRRS + 23 6 ZIV3 SV 3 z-component of position error

ISINS + SRRS + 24 45Rcloop4 SV 4 code loop error
SINS + SRRS + 25' bRtgrop, SV 4 tropospheric error
SINS + SRRS + 26 6&10 ., SV 4 ionospheric error
SINS + SRRS + 27 MiRCI, SV 4 clock error

SINS + SRRs + 28 45x 8 ,4  SV 4 x-component of position error
SINS + SRRS + 29 by&V SV 4 Y-co mponent of position error-
SINS + SRRS + 30 45z 8" SV 4 z-component of position error,
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Table A.7. Reduced-Order INS System Model: INS States 1-- 20

J State State Definition
Number Symbol

1 SO, X-component of vector angle from true to computer frame
2 6oy Y-component of vector angle from true to computer frame
3 6. Z-component of vector angle from true to computer frame
4 € X-component of vector angle from true to platform frame
5 OY Y-component of vector angle from true to platform frame
6 0, Z-component of vector angle from true to platform frame
7 6V X-component of error in computed velocity
8 bVy Y-component of error in computed velocity
9 b5V;, Z-component of error in computed velocity
10 h Error in vehicle altitude above reference ellipsoid
11 bhL Error in lagged inertial altitude
12 bS3 Error in vertical channel aiding state
13 ] S4  Error in vertical channel aiding state

14 V., X-ccmponent of accelerometer and
velocity quantizer correlated noise

15. Vy, Y-component of accelerometer and
velocity quantizer correlated noise

16 VzC Z-component of accelerometer and
velocity quantizer correlated noise

17 bg, X-component of gravity vector errors
18 #5gy Y-component of gravity vector errors
19 . g, Z-component of gravity vector errors
20 h j Total baro-altimeter correlated error
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Table A.8. Reduced-Order INS System Model: INS States 21 - 41

State State Dfiton 1
Number Symbol

21 b., X-component of gyro drift rate repeatability
22 by Y-component of gyro drift rate repeatability
23 b, Z-component of gyro drift rate repeatability
24 Sg. X-component of gyro scale factor error
25 SV Y-component of gyro scale factor error
26 Sg. Z-component of gyro scale factor error
27 Vb. X-component of accelerometer bias repeatability
28 Vb Y-component of accelerometer bias repeatability
29 Vbz Z-component of acce!erometer bias repeatability
30' SA. X-component of accelerometer and velocity

quantizer scale factor error
31 SA, Y-component of accelerometer and velocity

quantizer scale factor error
32 S.4. Z-component of acce!erometer and velocity

quantizer scale factor error
33 SQA, X-component of accelerometer and velocity

quantizer scale factor asymmetry
34 SQA, Y-component of accelerometer and velocity

quantizer scale factor asymmetry
35 SQA.' Z-component of accelerometer and velocity

quantizer scale factor asymmetry
36 Al X accelerometer misalignment about Z-axis
37 A2 Y accelerometer misalignmint about Z-axis
38 A3 Z accelerometer misaligiment about Y-axis
39 0i X-accelerometer misalignment about Y-axis
40 02 Y-accelerometer misalignment about X~axis
41 _oj Z-accelerometer misalignment about X-axis

A-10



Table A.9. DGPS Error States

State State Definition

_ _Number Symbol [NOTE: SRRS = Total RRS States]

SINS + SRRS + 1 bRuclk. ABR clock bias

SINS + SRRS + 2 6Duk. ABR clock drift

SINS + SRRs + 3 bRto.p SV 1 tropospheric error
SINS + SRRs'+ 4 6Ri,, SV 1 ionospheric error
SINS + Sas + 5 xsl SVI x-component of position error
SINS + SRRs + 6 6yo5  SV 1 y-component of position error
SINS + SRRS + 7 6zy SV 1 zycomponent of position error

SINS + SRRS + 8 6Rt 0 ... SV 2 tropospheric errcr
SINS + SRRS + 9 6RSo,12  V 2 ionospheric error
SINS + SRRS + 10 6X, SV 2 x-component of position error
SINS + S__ _s + 11 _y _ SV 2 y-component of position error

SINS + SanS + 12 6 z,, SV 2 z-component of position error

SINS + SRRS + 13 6 R&,o3  SV 3 tropospheric error

SINS + SRRS + 14 6R 0o, SV 3 ionospheric error
SINS + SRRS + 15 6z°. SV 3 x-component of position error
SINS + SRRS + 16 6 y,, SV 3 y-component of position error
SINS + SRRs + 17 6zV3  SV 3 z-component of position error

SINS + SRRS + 18 6Rt7.ow SV 4 tropospheric error
SINS + SRnS + 19 6R, 1, SV 4 ionospheric error

SINS + SRRS + 20 6xS 4  SV 4 x-component of position error

SINS + SRRS + 21 6 yoV4  SV 4 y-component of position error
SINS + SRRS + 32 6z°,,4  SV 4 z-component of position error
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Appendix B. Litton LN-93 Error-State Model Dynamics Matrix

(22)

The LN-93 error-state dynamics matrix (F) as provided by Litton is a 93-by-

93 array that, contains a large number of elements that are identically zero. Litton

partitions the F matrix into thirty-six subarrays. (11) reflecting the logical divisions

of error sources discussed in Chapter IIl.

The reader should note that only the NON-ZERO elements are included in the

tables wbich follow, and should further note that the revised baro-altimeter model

states are NOT included in this set of ORIGINAL F matrix elements extracted from

the Litton document (11).

A notational convention (22) is to label elements of the C! , sensor-to-true,

matrix as C,, where i is the row and j is the column in f.he transformation matrix.
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Table B.1. Elements of the Dynamics Submatrix F11 (22)

ElementT Term JfElement J Term

,(1,3) p (1,8)1 -CRY
(2,3) Pr (27)j CRX

(3,1) py (3,2) -PX

(4,2) -i?, (4,3) fl
(4,5) Wit,___________ (4,6) -Wit,_________

(4,8) -CRY (5,1) 01_______

(5,3) -Qx (5,4) -Wit,_______

(5,6) Wi, ~ (5,7) CRX
(6,1) -flu (6,2) fIl
(6,4) Wi,(6,5) -Wit,

(7,1) -72VQ,~, - 2V.9~, (7.2) 2Vyfl,
7T,3) 2 V..f2 (7,5) -Az_______

(7,6) AV________ (7,7) '-VZCRX

(7,8) 20Z (7,9) -py - M
(8,1) 2V fly (8,2) -2Vj2l,- 2V ,
(8,3) 2v, 1 (8,4) A,
(8,6) -Ax (8,7) -2Q,______

(8,8) -V CRY (8,9) P, + 20,7
(9,1) 2V ft. (9,2) Vvfl,_____

(9,3) -2Vy~l- 2V1ir (9,4) -AV
(9,5) Ar (9,7) py + 2fly + V.CRX

(9,8) -p, 2Q, + VVCRY (9,10) 2g./a
(9,11) -k 2  (9,12) -
(9,13) k2(10,9)1

(10,11) -ki (10,13) k-1I

(12,11) 13 (12,13) -k3
(12,11) k4__________ (12,11) -k4

(13,13) k4- 1I________________
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Table B.2. Elements of the Dynamics Submatrix F 12 (22)

Element Term II Element Term Element Term II
(4,14) C11  (4,15) C12  (4,16) C 13

(4,24) Cn1t (4,25) C 12t (4,26) C13 t
(5,14) C2 1  (5,15) C22  (5,16) C23

(5,24) C21 t (5,25) C22 t (5,26) C2 3t

(6,14) C3 1  (6,15) C3 2  (6,16) C33

(6,24) C 31t (6,25) C32 t (6,26) C33t

(7,17) C1, (7,18) C12  (7,19) C1 3

(7,20) 1 (7,27) C11t (7,28) C 12 t
(7,29) C13t (8,17) C21  (8,18) C2

(8,19) C2 3  (8,21) 1 (8,27) C2 1 t

(8,28) C22t '(8,29) C3t (9,17) C31

(9,18) C32  (9,19). C33 (9,22) 1

(9,23) k2 (9,27) C31t (9,28) C32 t
(9,29) C3t (10,23) ki (12,23) -k 3

(13,23) k4/600

Table B.3. Elements of the Dynamics Submatrix F13 (22)

Element Term Element Term Element Term
(4,30) C11  (4,31) C1 2  (4,32) C13

(4,33) CIWib. (4,34) C12wib, (4,35) C 1 3wb,
(4,36) CIIUWib. ,(4,37) -C,2wb. ,-(4,38) C13Wib,

(4,39) -Cuwib. (4,40). C 12Wib, (4,41)- -C13wib,
(4,42) C11wb __ (4,43) C12W___ _ " (4,44) 3__ _ . ._

(4,45) 0.SC, lwb, 1 (4,46) 0.5C12 1(dibl (4,47) 0.5CI3 W, b,
(5,30) C21  (5,31) C22  (5,32) C2 3

(5,33) C2,Wib,  (5,34) C22wib. (5,35) C2 3wib,
(5,36) C21wib. (5,37) -C 2 2wib (5,38) C23wib,,

(5,39) -C2, b, (5,40) C 22W4, (5,41) -C 2 3wib

(5,42) C2_w__, (5,43) .C22wb (5,44) C 23Wb,,

(5,45) 0.5C2 Iwib, I (5,46) 0.5C22I& , j (5,47) 0.5C23Iw,b I

(6,30) C3 , (6,31) C32  (6,32) _._-C33

(6,33) C 3 1 Wib, (6,34) C 3 2Wib (6,35) _C,_Wb_ _

(6,36) C3 1w,, (6,37) -Cw, (6,38) C3wbs

(6,39) -C 3wjb, (6,40) C32wib, (6,41) -C33Wib,

(6,42) C3Wjb., '  (6,43) 3 (6,44) C"b,i

(6,45) 0.5C 3 ,lwI (6,46) 0.5C 21Wbj (6,47) 0.5C33twJ6b,
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Table B.4. Elements of the Dynamics Submatrix F1 4 (22)

Element Term Element Term Element Term D
(7,48) C11  (7,49) C12  (7,50) C13
(7,51) C11A (7,52) C12A (7,53) C13AB:
(7,54) C,,IAXI (7,55) C12 Av2A (7,53) C3mA'l
(7,57) C1 a1 2  (7,58) C, 2A 2  (7,59) C131AB'2

.(7,60) C IAB8AB (7,61) C 1 AL4B. (7,62) C,AitA.B
(7,63) B (7,64) C,3AtJAt 7,65) C .3 tAA

(7,66) C(7,5) -C ,2A t (7,68) C,A B_

(7,69) C1 A- (8,48) C, '(8,49) C22

(8,50) C23  (8,51) C2 1 A ' (8,52) C12A,

(8,53) CzA (8,54) C 2,IA I (8,55) C22iA I

(8,56) C tA 'I (8,57) C2,A "  (8,58) C22Ab2

(8,59) C3A ' (8,60) C2 1A"BB. (8,61) C2,A.BA.(8,62) C1A' B (8,63) C13A BA B (8,64) CiAi AA

(8,65) C AA' A (8,66) C,2 A ' (8,67) -C ,,A11

(8,68) (8,69) C 3A (9,48) C3,

(9,49) C3  (9,50) C ' (9,51) C3 AH

(9,52) C 3 A CA' (9,54) C3,1,4

(9,55) C'3,AXI (9,56) 6!2IASI ( _ . ,, A

(9 ,58 ) C 3 1 A ( ((, 7 F 2,AC' (A,58A

( 9 ,6 1 ) B 1  ( 9 ,6 2 ) _ _ ' B ( 8 ,6 1 ) BB
( ,9AA3 (9,63 C. 2.4,, A,

(9,64) (9,65) (,6) C3 AB

(86) C22 A Ar$ , 63 VaA, Ar (966 A

(9,6) - 3 A(968) C,(A6 (9,69) A

Table B.5. Elements of. the Dynamics Submatrix F, 5 (22)

SElement]I Term if Element ir~ I1 Element j Trerm
S(4,73) C, (4,74) C, 2  (4,75) C,3

(5,73) C2 1 (5,74) C 2  (5,75) C 1

(6,73) C3  (6,70 ) C3 3 (6,75) C 3 A

(7,70) C,, (7,71) C, 2  (7,72) C, 3

(8,70) C2, (8,71) C22  (8,72) C23
.(9, ) C32A (9,71) C32 (9,72) C 3  A
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Table B.6. Elements of the Dynamics Submairix F16 (22)

Element Term Element Term Element Term

(4,76) CIIABWibz (4,77) C, (4,78) C,, IAoWb(47) C,,Afuw b (4,80) C, A'W ibz 48) C A wLib,

(48) 2u (79)3 zt fL C12AZUWibs,_ _C12 lWb. (4,81)

(4,85) C,2,4rw b,  (4,86) C AWb1 (4,87) A

(4,88) C, A _voi (4,89) C13AXIWib ,90 C13.4'~wib.

(4,91) C13 A'wib. (4,92) C13A Uib, (4,93) C13A',Wib.
(5,76) (A ,j6, 5,77) C,_A, _ (5,78) C2A'Wib

(5,79) C 2 1A wib, (5,80) C21Aju (5,81) C__A

(5,82) C2 2 A 'wib,, (5,83) C22A'wib, (5,84) C 22A'woib,
(5,85) C22Awib (5,86) C . (5,87) _________

(5.88) C2 3Awib, (5,89) C s (5,90) C23A'wib,
(5,91) CAwa (5,92) ) C2AWib,

A(_1) C31A w,9, (6,78) Af
(6,76) cGia 5  (6,77) C3,3A' (6,78) 3,Awb,
(6,79) C31A wjW (6,80) C 3 lA"wib, (6,81)(6,79A______,_(6,8______

(6,82) C 32AfwibZ (6,83) C (6,84)
(6,85) C32AdWb 5  (6,86) C (6,87)

wo. C2A, Wib.C32 A'Uwib,,

(6,88) Cx3AfwjbA (6,89) JWib (6,90) C33AdWib7

(6,91) C33A'wib, (6,92), _ A wib, (6,93) C.A wi*

Table B.7. Elements of the Dynamics Submatrix F 22 (22)

Element Term II Element [Term Element Term II
(14,14) '-06, (15,15). -- (bi- 16j16) -06,

(17,17) - (18,18) -/3v., (19,19) -3v,
(20,20) -fs (21,21) .. 6, (22,22) -13s,-(23,23) -/, _.

Table B.8. ElI'nents of the Dynamics Submatrix Fs (22)

Element Term Element Term Element ITerm

(70,70) -/Iv.* (71,71) -4v, (72,72) -/k,
(73,73) -, (74,74) -..,, (75,75) Ib,
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B.lI Elements of the Process Noise Matrix

The Litton document (11) includes a 93-by-93 process noise matrix ()for the

LN-93 error model. Like the F matrix, the Q matrix is part-tioned-int: subarrays

which correspond to the error-state subvectors discussed in Chapter 111. The vast

majority of the elements in Q are identically zero. Only the non-zero elements of Q

ae shown below.

Table B.9. Non-zero Elements of Process Noise Submatrix Q1 (22)

Element fTerm FclhInrIat Term J
(4,4) a' (55) a'7

(6,6) (7,7)_

Table B.10. Non-zero Elements of Process Noise Submatrix Q2;2 (22)

Element Term 11Element [ Te rm. n
(14,14) 2,36,C a6, (15,15) __________

(16,16) 203b., ' (17,17) 20~,q, a

(18,18) 2,3v a2~ (18,18) 2Jik 2
*I(20,20) 2 Igs. (21,21) 2 g ori

(22,22) 26,a (23,23) 2______5_,



Appendix C. Comparison of 93-state and 41-State INS Models

This appendix contains plots of position, velocity, and attitude errors of the

93-state and 41-state Litton Ln-93 INS truth models during a 10-run Monte Carlo

2-hour flight profile (11). No alignment was performed previous to the start of the

flight, causing the large magnitudes in all the errors. These plots show that the 41-

state truth model almost exactly matches the 93-state truth model, and it is suitable

for use as the truth model for all the filters developed in this thesis.
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Appendix D. Stacey's 128-State NRS Filter Performance Plots

All plots contained in this and subsequent appendices are discussed in Chapter

V (Results). All plots contained in this and subsequent appendices contain five traces.

The innermost trace (- -- ) on each data plot is the mean error time history for the

applicable state. Mean Error is defined as being the difference between the filters

estimate of the state and. the true state averaged over the number of Monte Carlo

runs performed. The equation describing this relationship is defined by (14, 22):

N N
Me(ti) ej(ti) 1 =N j(ti)-Xtr(ti)1 (D.1)

where i(ti) is the filter-computed estimate of variable j and xtr,, (ti) is the truth

model value of the same variable, at time ti, for sample j, and N is the number of

time histories in the simulation (10 in this thesis).

In addition to the center trace, two more pairs of traces are plotted. The first

pair (represented by ... ) is symmetrically displaced about the mean and as a result

follows the "undulations" of the Me(t,). The locus of these traces is calculated from

(15, 22) Me(ti) ± ,/P7-it.) where Pe(ti) is the true error covariance at time ti. The

true standard deviation is calculated from (14, 22):

oe(t,)= v i N1 ) (D.2)

where N is the, number of runs in the Monte Carlo simulation (10 in this thesis),

and M'(ti) is the mean-squared value of the variable at each time of interest (such

as measurement times).

The last pair of traces (-) represents the filter computed ± Oa itt , values for

the same variables of interest and are symmetrically displaced about zero because

the filter "believes" that it is producing zero-mean errors (16, 22). These quantities

D-1



are propagated and updated in the MSOFE (3, 22) software using the covariance

propagation equation shown in Chapter II. These traces represent the filter's estimate

of its own error.

D.1 Stacey's 128-State NRS Filter Performance Plots

The plots in this section represent results of a 10-run Monte Carlo 2-hour fighter

flight profile simulation. In these runs the GPS receiver clock states initial covariance

values have been decreased 4 orders of magnitude, as discussed in Chapter V, so that

single precision could be used in the MSOFE simulation. This filter incorporates both

RRS range and GPS pseudorange measurements.
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Appendix E. 97-State NRS Filter Performance Plots

The Plots in this section represent results of a 10-run Morte Carlo 2-hour fighter

flight profile simulation. In these runs the GPS receiver clock states initial covariance

values have been decreased 4 orders of magnitude, as discussed in Chapter V, so that

single precision could be used in the MSOFE simiulation. This filter-incorporates both

RRS range and GPS pseudorange measurem~enits.
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Appendix F. 69-Stote NRS Filter Performance Plots

The plots in this section represent results of a 10-run Morte Carlo 2-hour fighter

flight profile simulation. This filter analysis was performed in double precision, so

the GPS receiver clock errors are at their actual values. This reduced-order ,filter

incorporates both RRS range and GPS pseudorange measurements.
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Appendix G. 89-State ENRS Filter Performance Plots

The plots in this section represent results of a 10-run Monte Carlo 2-hour fighter

flight profile simulation. In these runs the GPS receiver clock states initial covariance

values have been decreased 4 orders of magnitude, as discussed in Chapter V, so that

single precision could be used in the MSOFE simulation. This filter incorporates both

RRS range and DGPS pseudorange measurements.
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Appendix H. 48-State ENRS Filter Performance Plots

The plots in this section represent results of a 10-run Monte Carlo 2-hour fighter

flight profile simulation. This filter analysis was performed in double precision, so

the GPS receiver clock errors are at their actual values. This reduced-order filter

incorporates both RRS range and DGPS pseudorange measurements.
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Appendix I. 22-State DGPS Filter Performance Plots

The plots in this appendix present results of 10-run Monte Carlo simulations

for a 22-state reduced-order filter used to implement delta-range measurements. The

first section contains plots from the 2-hour fighter flight profile. The second section

contains plots from a 2-hour straight trajectory. Hoth filter analyses were performed

in double precision, so the DGPS receiver clock errors are at their actual values.

These reduced-order filters incorporate both DGPS pseudorange and delta-range

measurements.
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Appendix J. 46-State CIRIS Filter Performancc Plots

The plots in this appendix present results of 10-run Monte Carlo simulations

for a 46-state full-order filter used to implement range-range measurements. The

first section contains plots from the 2-hour fighter flight profile. The second section

contains plots from a 2-hour racetrack trajectory. Both filter analyses were performed

in single precision since no DGPS states are modeled. These reduced-order filters

incorporate both RRS range and range-rate measurements.
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J.2 2-Hour Racetrack Flight Profile
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Altitude
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Figure J. 11. 46-State CIRIS Filter, Racetrack Flight Profile Filter (a) East Tilt (b)
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Appendix K. 48-State ENRS Filler Performance flots

The plots in this section represent results of a 25-run Monte Carlo 2-hour

fighter flight profile simulation. This filter analysis was performed in double preci-

sion, so the DGPS receiver clock errors are at their actual values. This redu'ed-order

filter incorporates RRS range/range-rate and DGPS pseudorange/de!ta-range mea-

surements.
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